Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic

Break \& Quiz

Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic No: riding your bike take longer.
- B. Not an admissible heuristic

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max \left(2, h^{*}(s)\right)$
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $\quad h(s)=\max \left(2, h^{*}(s)\right)$
(iii) $\quad h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 1.2: Which of the following are admissible heuristics?
(i) $h(s)=h^{*}(s)$
(ii) $h(s)=\max \left(2, h^{*}(s)\right) \quad$ No: $h(s)$ might be too big
(iii) $h(s)=\min \left(2, h^{*}(s)\right)$
(iv) $h(s)=h^{*}(s)-2$
(v) $\quad h(s)=\operatorname{sqrt}\left(h^{*}(s)\right)$

No: $h(s)$ might be negative

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2}
- C. Neither dominates the other

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. h_{1} dominates h_{2}
- C. Neither dominates the other

Break \& Quiz

Q 2.1: Consider two heuristics for the 8 puzzle problem. h_{1} is the number of tiles in wrong position. h_{2} is the $I_{1} /$ Manhattan distance between the tiles and the goal location. How do h_{1} and h_{2} relate?

- A. h_{2} dominates h_{1}
- B. \boldsymbol{h}_{1} dominates h_{2} (No: \boldsymbol{h}_{1} is a distance where each entry is at most $1, h_{2}$ can be greater)
- C. Neither dominates the other

Break \& Quiz

Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A^{*} after the initial state I?

- A. A
- B. B
- C. C

Break \& Quiz

Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A^{*} after the initial state I?

- A. A
- B. B
- C. C

