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Announcements

* Homeworks:
— HW2 due Tuesday---get started early!

e Class roadmap:

Thursday, Jan 28 Probability

Tuesday, Feb 2 Linear Algebra and PCA
Tuesday, Feb 9 Introduction to Logic
Thursday, Feb 11 Natural Language

Processing

—

s|eusawepun4



Outline

O Basal
e . ] |:| LumA
* s PCI _ O LumB
R8s . (OERrBR
O Normal

e - AU -
Unclassified
'“i’tu nclassifie

 Finish last lecture: PCA

A N = |:|(]mup A
A 3 " O GroupB

 Review of probability " e

 Statistics: sampling & estimation

b) ELMAP2D c) PCA2D

Wikipedia



Principal Components Analysis (PCA)

e Atype of dimensionality reduction approach
— For when data is approximately lower dimensional




Principal Components Analysis (PCA)

* Goal: find axes of a subspace

— Will project to this subspace; want to preserve data




Principal Components Analysis (PCA)

* From 2D to 1D:

— Finda v € R%  so that we maximize “variability”

- A :

— New representations are along this vector (1D!)



Principal Components Analysis (PCA)

* From d dimensions to r dimensions-

— Orthogonal! 8
e
— Still minimize the projection error :

— Sequentially get vy,v9,...,0, € RY 4
v,
* Equivalent to “maximizing variability” o

¢

— The vectors are the principal =
components N

Victor Powell



PCA Setup

* Inputs
— Data: T1,5,L2y ...y Ty, Tj ERd
— Can arrange into X € Rnxd
|
— Centered! - Zazz =0
° OUtpUtS =1 Victor Powell
— Principal components V1, V9, ... Uy € R?

— Orthogonal!




PCA Goals

* Want directions/components (unit vectors) so that

— Projecting data maximizes variance
n

D {wi,0)? = || Xo||?

i=1
— To project a onto unit vector b,

— What’s projection?

(a,b)b ~— Direction

Length

Paolo.dL



PCA Goals

* Want directions/components (unit vectors) so that

— Projecting data maximizes variance
n

D @i, ) = || Xv||?

1=1

— What’s projection?

* Do this recursively

— Get orthogonal directions v1,v9,...,0, € RY



PCA First Step
* First component,
v1 = arg max Yy (v, ;)

* Same as getting

v1 = arg max || Xv||”
v]|=1



PCA Recursion

* Once we have k-1 components, next?

k—1
Xk = X — Z XU@'U;F
1=1 \
* Then do the same thing Deflation

v, = arg max || Xzw||?
|v]]=1



PCA Interpretations

* The Vv’s are eigenvectors of X’X (Gram matrix)
— Show via Rayleigh quotient

* XX (proportional to) sample covariance matrix
— When data is 0 mean!
— l.e., PCA is eigendecomposition of sample covariance

* Nested subspaces span(vl), span(v1i,v2),... _




Lots of Variations

 PCA, Kernel PCA, ICA, CCA

— Unsupervised techniques to extract structure from high
dimensional dataset

Individuals - PCA

* Uses: A e
— Visualization P Iy Y
— Efficiency LRt
— Noise removal RO mn:

— Downstream machine learning use
STHDA



Application: Image Compression

e Start with image; divide into 12x12 patches
— |.E., 144-D vector

— Original image:




Application: Image Compression

* 6 most important components (as an image)
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Application: Image Compression

* Project to 6D,

Compressed



Probability Review: Outcomes & Events

e QOutcomes: possible results of an experiment
* Events: subsets of outcomes we’re interested in

Ex: Q=1{1,2,3,4,5,6}

TV
outcomes

F={0.41},{2},....{1.2}..... 0}

events




Review: Probability Distribution

* We have outcomes and events.
* Now assign probabilities For E € F, P(E) € [0,1]

Back to our example:
F = {@7 {17 3, 5}7 {27 47 6}’ Q}
ev?egts

P({1,3,5}) = 0.2, P({2,4,6}) = 0.8




Review: Random Variables

* Map outcomestorealvalues X : Q) =R
* Can still work with probabilities:

P(X =3):= P({w: X(w) = 3))

 Cumulative Distribution Function (CDF)

Fx(z):= P(X < z)



Review: Expectation & Variance

Another advantage of RVs are ' summaries”

Expectation: E[X]=)_ax P(x=a) _

—_ The ”averagen I
Variance: VaT[X] — E[(X _ E[X])Q] :/w’\d

— A measure of spread

Higher moments: other parametrizations



Review: Conditional Probability

* For when we know something,

P(X =a,Y =)
P(Y = b)

P(X =alY =b) =

* Leads to conditional independence
P(X,Y|Z)=P(X|Z)P(Y|Z)

Credit: Devin Soni



Review: Bayesian Inference

* Conditional Prob. & Bayes:

P(E,.... E,|H)P(H
P(H|Ey, By, ..., Ey) = (B, En|H)P(H)

P(E1, Es, ..., Ey)

e Has more evidence.

— Likelihood is hard---but conditional independence
assumption

E\|H)P(Ea|H) -, P(Eq|H)P(H)
P(E\, E,...,Ey)

P
P(H|E1,Es, ..., E,) = (



Review: Classification

* Expression
F\|H)P(Es|H)--- ,P(E,|H)P(H)

P(H|Ey,Es,...,E,) = il
P(Ey1, Es, ..., E,)
 H:some class we’d like to infer from evidence
— Estimate prior P(H)
— Estimate P(E;/H) from datal
— How?



Samples and Estimation

e Usually, we don’t know the distribution (P)
— Instead, we see a bunch of samples

* Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean E[X]
— Estimate parameters PH (X)




Samples and Estimation

* Typical statistics problem: estimate
parameters from samples
— Estimate probability P(H)
— Estimate the mean FE[X]
— Estimate parameters PH(X)

 Example: Bernoulli with parameter p
— Mean E[X] isp




Examples: Sample Mean

* Bernoulli with parameter p
 See samples T1,%2,...,Zy

— Estimate mean with sample mean
1 n
EX] = - z; z;
1=

— No different from counting heads




Estimation Theory

e How do we know that the sample mean is a good
estimate of the true mean?

probability of heads

— Concentration inequalities -
P(IE[X] - E[X]| > t) < exp(—2nt?)
— Law of large numbers /,,\/ o [ e

— Central limit theorems, etc.

Wolfram Demo



