

# CS 540 Introduction to Artificial Intelligence Statistics & Math Review

Fred Sala University of Wisconsin-Madison

Feb 4, 2021

#### **Announcements**

- Homeworks:
  - HW2 due Tuesday---get started early!
- Class roadmap:

| Thursday, Jan 28 | Probability                    | $\neg$      |
|------------------|--------------------------------|-------------|
| Tuesday, Feb 2   | Linear Algebra and PCA         | und         |
| Thursday, Feb 4  | Statistics and Math<br>Review  | Indamentals |
| Tuesday, Feb 9   | Introduction to Logic          | tals        |
| Thursday, Feb 11 | Natural Language<br>Processing |             |

#### Outline

Finish last lecture: PCA

Review of probability

Statistics: sampling & estimation



Wikipedia

- A type of dimensionality reduction approach
  - For when data is approximately lower dimensional



- Goal: find axes of a subspace
  - Will project to this subspace; want to preserve data



#### • From 2D to 1D:

- Find a  $v_1 \in \mathbb{R}^d$  so that we maximize "variability"
- IE,



New representations are along this vector (1D!)

- From d dimensions to r dimensions
  - Sequentially get  $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
  - Orthogonal!
  - Still minimize the projection error
    - Equivalent to "maximizing variability"
  - The vectors are the principal components



Victor Powell

# **PCA Setup**

#### Inputs

- Data:  $x_1, x_2, \dots, x_n, x_i \in \mathbb{R}^d$
- Can arrange into

$$X \in \mathbb{R}^{n \times d}$$

- Centered!

$$\frac{1}{n} \sum_{i=1}^{n} x_i = 0$$

# pr

**Victor Powell** 

#### Outputs

- Principal components  $v_1, v_2, \dots, v_r \in \mathbb{R}^d$
- Orthogonal!

#### **PCA Goals**

- Want directions/components (unit vectors) so that
  - Projecting data maximizes variance
  - What's projection?

$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = \|Xv\|^2$$

To project a onto unit vector b,





#### **PCA Goals**

- Want directions/components (unit vectors) so that
  - Projecting data maximizes variance
  - What's projection?

$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = ||Xv||^2$$

- Do this recursively
  - Get orthogonal directions  $v_1, v_2, \dots, v_r \in \mathbb{R}^d$

#### **PCA First Step**

• First component,

$$v_1 = \arg\max_{\|v\|=1} \sum_{i=1}^{\infty} \langle v, x_i \rangle^2$$

Same as getting

$$v_1 = \arg\max_{\|v\|=1} \|Xv\|^2$$

#### **PCA** Recursion

• Once we have *k-1* components, next?

$$\hat{X}_k = X - \sum_{i=1}^{\kappa - 1} X v_i v_i^T$$

Then do the same thing

$$v_k = \arg\max_{\|v\|=1} \|\hat{X}_k w\|^2$$

#### **PCA** Interpretations

- The v's are eigenvectors of  $X^TX$  (Gram matrix)
  - Show via Rayleigh quotient
- $X^TX$  (proportional to) sample covariance matrix
  - When data is 0 mean!
  - I.e., PCA is eigendecomposition of sample covariance

Nested subspaces span(v1), span(v1,v2),...,

#### **Lots of Variations**

- PCA, Kernel PCA, ICA, CCA
  - Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
  - Visualization
  - Efficiency
  - Noise removal
  - Downstream machine learning use



# **Application: Image Compression**

• Start with image; divide into 12x12 patches

I.E., 144-D vector

– Original image:



# **Application: Image Compression**

6 most important components (as an image)



#### **Application: Image Compression**

Project to 6D,



Compressed



Original

# Probability Review: Outcomes & Events

- Outcomes: possible results of an experiment
- Events: subsets of outcomes we're interested in

Ex: 
$$\Omega = \underbrace{\{1, 2, 3, 4, 5, 6\}}_{\text{outcomes}}$$
  

$$\mathcal{F} = \underbrace{\{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \dots, \Omega\}}_{\text{events}}$$



### Review: Probability Distribution

- We have outcomes and events.
- Now assign probabilities For  $E \in \mathcal{F}, P(E) \in [0,1]$

#### Back to our example:

$$\mathcal{F} = \underbrace{\{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}}_{\text{events}}$$

$$P({1,3,5}) = 0.2, P({2,4,6}) = 0.8$$



#### Review: Random Variables

- Map outcomes to real values  $X:\Omega 
  ightarrow \mathbb{R}$
- Can still work with probabilities:

$$P(X = 3) := P(\{\omega : X(\omega) = 3\})$$

Cumulative Distribution Function (CDF)

$$F_X(x) := P(X \le x)$$

### Review: Expectation & Variance

- Another advantage of RVs are ``summaries''
- Expectation:  $E[X] = \sum_a a \times P(x = a)$ 
  - The "average"
- Variance:  $Var[X] = E[(X E[X])^2]$ 
  - A measure of spread
- Higher moments: other parametrizations



# **Review: Conditional Probability**

For when we know something,

$$P(X = a|Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}$$

Leads to conditional independence

$$P(X,Y|Z) = P(X|Z)P(Y|Z)$$



Credit: Devin Soni

### Review: Bayesian Inference

Conditional Prob. & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- Has more evidence.
  - Likelihood is hard---but conditional independence assumption

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

#### **Review: Classification**

Expression

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- H: some class we'd like to infer from evidence
  - Estimate prior P(H)
  - Estimate  $P(E_i|H)$  from data!
  - How?

### Samples and Estimation

- Usually, we don't know the distribution (P)
  - Instead, we see a bunch of samples

- Typical statistics problem: estimate parameters from samples
  - Estimate probability P(H)
  - Estimate the mean E[X]
  - Estimate parameters  $P_{\theta}(X)$



# Samples and Estimation

- Typical statistics problem: estimate parameters from samples
  - Estimate probability P(H)
  - Estimate the mean E[X]
  - Estimate parameters  $P_{\theta}(X)$
- Example: Bernoulli with parameter *p* 
  - Mean E[X] is p



### Examples: Sample Mean

- Bernoulli with parameter p
- See samples  $x_1, x_2, \dots, x_n$ 
  - Estimate mean with sample mean

$$\hat{\mathbb{E}}[X] = \frac{1}{n} \sum_{i=1}^{n} x_i$$



No different from counting heads

# **Estimation Theory**

 How do we know that the sample mean is a good estimate of the true mean?

Concentration inequalities

$$P(|\mathbb{E}[X] - \hat{\mathbb{E}}[X]| \ge t) \le \exp(-2nt^2)$$

- Law of large numbers
- Central limit theorems, etc.



Wolfram Demo