

CS 540 Introduction to Artificial Intelligence Unsupervised Learning I

Fred Sala University of Wisconsin-Madison

Feb 18, 2021

Announcements

- Homeworks:
 - HW3 recap / HW4 released on Tuesday
- Class roadmap:

Tuesday, Feb 16	ML Intro	
Thursday, Feb 18	ML Unsupervised I	
Tuesday, Feb 23	ML Unsupervised II	
Tuesday, Feb 25	ML Linear Regression	
Thursday, Feb 25	ML: Naïve Bayes, Recap	

Recap of Supervised/Unsupervised

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

• Goal: find function $f: X \to Y$ to predict label on **new** data

Recap of Supervised/Unsupervised

Unsupervised learning:

- No labels; generally won't be making predictions
- Dataset: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$
- Goal: find patterns & structures that help better understand data.

Outline

- Intro to Clustering
 - Clustering Types, Centroid-based, k-means review
- Hierarchical Clustering
 - Divisive, agglomerative, linkage strategies
- Other Clustering Types
 - Graph-based, cuts, spectral clustering

Recap of Supervised/Unsupervised

Note that there are **other kinds** of ML:

- Mixtures: semi-supervised learning, self-supervised
 - Idea: different types of "signal"

- Reinforcement learning
 - Learn how to act in order to maximize rewards
 - Later on in course...

DeepMind

Unsupervised Learning & Clustering

- Note that clustering is just one type of unsupervised learning (UL)
 - PCA is another unsupervised algorithm
- Estimating probability distributions also UL (GANs)
- Clustering is popular & useful!

StyleGAN2 (Kerras et al '20)

Several types of clustering

Partitional

- Centroid
- Graph-theoretic
- Spectral

Hierarchical

- Agglomerative
- Divisive

Bayesian

- Decision-based
- Nonparametric

- k-means is an example of partitional centroid-based
- Recall steps: 1. Randomly pick k cluster centers

• 2. Find closest center for each point

• 3. Update cluster centers by computing centroids

Repeat Steps 2 & 3 until convergence

Hierarchical Clustering

Basic idea: build a "hierarchy"

- Want: arrangements from specific to general
- One advantage: no need for k, number of clusters.
- Input: points. Output: a hierarchy
 - A binary tree

Credit: Wikipedia

Agglomerative vs Divisive

Two ways to go:

- Agglomerative: bottom up.
 - Start: each point a cluster. Progressively merge clusters

- Divisive: top down
 - Start: all points in one cluster. Progressively split clusters

Credit: r2d3.us

Agglomerative. Start: every point is its own cluster

Get pair of clusters that are closest and merge

Repeat: Get pair of clusters that are closest and merge

Repeat: Get pair of clusters that are closest and merge

Merging Criteria

Merge: use closest clusters. Define closest?

• Single-linkage

$$d(A,B) = \min_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

Complete-linkage

$$d(A,B) = \max_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

Average-linkage

$$d(A,B) = \frac{1}{|A||B|} \sum_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

We'll merge using single-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

We'll merge using single-linkage

$$d(C_1, \{4\}) = d(2, 4) = 2$$

$$d(\{4\}, \{5\}) = d(4, 5) = 1$$
1 2 4 5 7.25

Continue...

$$d(C_1, C_2) = d(2, 4) = 2$$

 $d(C_2, \{7.25\}) = d(5, 7.25) = 2.25$

Continue...

We'll merge using complete-linkage

- 1-dimensional vectors.
- Initial: all points are clusters

Beginning is the same...

Now we diverge:

When to Stop?

No simple answer:

Use the binary tree (a dendogram)

 Cut at different levels (g different heights/depth

Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Encode similarity

- Don't need vectors here
 - Just edges (and maybe weights)

Graph-Based Clustering

Want: partition V into V₁ and V₂

- Implies a graph "cut"
- One idea: minimize the weight of the cut
 - Downside: might just cut of one node
 - Need: "balanced" cut

Partition-Based Clustering

Want: partition V into V_1 and V_2

- Just minimizing weight isn't good... want balance!
- Approaches:

$$Cut(V_1, V_2) = \frac{Cut(V_1, V_2)}{|V_1|} + \frac{Cut(V_1, V_2)}{|V_2|}$$

$$NCut(V_1, V_2) = \frac{Cut(V_1, V_2)}{\sum_{i \in V_1} d_i} + \frac{Cut(V_1, V_2)}{\sum_{i \in V_2} d_i}$$

Partition-Based Clustering

How do we compute these?

- Hard problem → heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:
 - Adjacency matrix

		•	•	_	_
	0	0	1	1	0
=	0	1	0	0	0
	1	1	0	0	1
	$\lfloor 1$	0	0	1 0 0 1	0

Partition-Based Clustering

- Spectral clustering approach:
 - Adjacency matrix
 - Degree matrix

$$= \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A (Important tool in graph theory)

- Spectral clustering approach:
 - -1. Compute Laplacian L = D A
 - 2. Compute k smallest eigenvectors
 - 3. Set U to be the $n \times k$ matrix with u_1 , ..., u_k as columns. Take the n rows formed as points
 - 4. Run k-means on the representations

- Compare/contrast to PCA:
 - Use an eigendecomposition / dimensionality reduction
 - But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

Q: Why do this?

- 1. No need for points or distances as input
- 2. Can handle intuitive separation (k-means can't!)

