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Announcements

* Homeworks:
— HW3 recap / HW4 released on Tuesday

e Class roadmap:

Tuesday, Feb 16 ML Intro

Tuesday, Feb 23 ML Unsupervised I
Tuesday, Feb 25 ML Linear Regression
Thursday, Feb 25 ML: Naive Bayes, Recap
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Recap of Supervised/Unsupervised

Supervised learning:

* Make predictions, classify data, perform regression
* Dataset: (Xh yl)a (X27 y2>7 SO <Xn7 yn)

Features / Covariates / Input Labels / Outputs

* Goal: find function f: X — Y to predict label on new data




Recap of Supervised/Unsupervised

Unsupervised learning:

No labels; generally won’t be making predictions
Dataset: Xi,Xs,...,Xy

Goal: find patterns & structures that help better understand
data.
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Outline

* Intro to Clustering

— Clustering Types, Centroid-based, k-means review

* Hierarchical Clustering

— Divisive, agglomerative, linkage strategies

e Other Clustering Types
— Graph-based, cuts, spectral clustering



Recap of Supervised/Unsupervised

Note that there are other kinds of ML:

— Mixtures: semi-supervised learning, self-supervised
* |dea: different types of “signal”

— Reinforcement learning
e Learn how to actin order
to maximize rewards

e Later onin course...

DeepMind



Unsupervised Learning & Clustering

* Note that clustering is just one type of unsupervised
learning (UL)

— PCA is another unsupervised algorithm

e Estimating probability distributions also UL (GANs)

e Clustering is popular & useful!

4
StyleGAN2 (Kerras et al '20)



Clustering Types

e Several types of clustering

4 Partitional

- Centroid
- Graph-theoretic
- Spectral
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Hierarchical
- Agglomerative
- Divisive
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Bayesian
Decision-based

Nonparametric
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Clustering Types

* k-means is an example of partitional centroid-based
e Recall steps: 1. Randomly pick k cluster centers
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Clustering Types

e 2. Find closest center for each point
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Clustering Types

e 3. Update cluster centers by computing centroids
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Clustering Types

* Repeat Steps 2 & 3 until convergence
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Hierarchical Clustering

Basic idea: build a “hierarchy”

 Want: arrangements from specific to
general

of clusters.

* Input: points. Output: a hierarchy
— A binary tree

Credit: Wikipedia



Agglomerative vs Divisive

Two ways to go:

* Agglomerative: bottom up.

— Start: each point a cluster. Progressively
merge clusters

* Divisive: top down

— Start: all points in one cluster. Progressively
split clusters

Credit: r2d3.us



Agglomerative Clustering Example
Agglomerative. Start: every point is its own cluster



Agglomerative Clustering Example
Get pair of clusters that are closest and merge
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge
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Agglomerative Clustering Example
Repeat: Get pair of clusters that are closest and merge
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Merging Criteria

Merge: use closest clusters. Define closest?
e Single-linkage
d(A,B)= min _d(z1,x2)

$1€A,CE2€B
e Complete-linkage
d(A,B)= max d(x1,x9)

T EA,QIQ €B
* Average-linkage
1

d(A,B) — Z d(il?l,ilfg)

CAIBl, A= s



Single-linkage Example

We’ll merge using single-linkage
* 1-dimensional vectors.
e Initial: all points are clusters

1 2 4 5 7.25



Single-linkage Example
We’ll merge using single-linkage

d(Cy, {4)) = d(2,4) = 2
d({4},{5}) = d(4,5) =1

1 2 4 S 7.25



Single-linkage Example

Continue...
d(Cy,Cz) = d(2,4) =2
d(Cy,{7.25}) = d(5,7.25) = 2.25

NN

1 2 4 5 7.25



Single-linkage Example

Continue...

1 2 4 S 7.25



Single-linkage Example

1 2 4 5 7.25



Complete-linkage Example

We’ll merge using complete-linkage
* 1-dimensional vectors.
e Initial: all points are clusters

1 2 4 5 7.25



Complete-linkage Example

Beginning is the same...

d(C1,Cy) = d(1,5) = 4
d(Cy, {7.25}) = d(4,7.25) = 3.25

1 2 4 5 7.25



Complete-linkage Example

Now we diverge:

1 2 4 5 7.25



Complete-linkage Example

1 2 4 5 7.25



When to Stop?

No simple answer:

e Use the binary tree (a
dendogram)

e Cut at different levels (g
different heights/depth:

http://opentreeoflife.org/



Other Types of Clustering

Graph-based/proximity-based
* Recall: Graph G = (V,E) has vertex set V, edge set E.

— Edges can be weighted or unweighted

— Encode similarity 0'0

e Don’t need vectors here © ovﬂ
— Just edges (and maybe weights)
N



Graph-Based Clustering
o

Want: partition Vinto V, and V,
* Implies a graph “cut”

* One idea: minimize the weight of
the cut
— Downside: might just cut of one node
— Need: “balanced” cut




Partition-Based Clustering

Want: partition Vinto V, and V,
e Just minimizing weight isn’t good... want balance!
* Approaches:

Cut(Vl, VQ) n Cut(Vl, VQ)

Cut(Vi1,Vs) =
A A v

Cut(Vl, Vg) n CUt<V17 V2)

NCU.t(Vl,V2>: z d z d
1€V 7 1€ Vo 1



Partition-Based Clustering

How do we compute these?

* Hard problem = heuristics
— Greedy algorithm

— “Spectral” approaches

e Spectral clustering approach:

O = - O O
OO OO = O
—_ O O =

0
0
— Adjacency matrix A=10
1
1

SO = O O =




Partition-Based Clustering

e Spectral clustering approach:
— Adjacency matrix
— Degree matrix
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Spectral Clustering

e Spectral clustering approach:
— 1. Compute Laplacian L=D - A
(Important tool in graph theory)

2 0 0 0 0 0 0 0 1 1

0 2 0 0 0 00 1 1 0
L={0 0 1 0 O0]—-(0 1 0 O 0=

00 0 3 0 1 1 0 0 1

00 0 0 2 1 0 0 1 0
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Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

e Spectral clustering approach:

— 1. Compute Laplacian L=D - A
— 2. Compute k smallest eigenvectors

— 3. Set U to be the n x k matrix with uy, ..., u, as
columns. Take the n rows formed as points

— 4. Run k-means on the representations



Spectral Clustering

* Compare/contrast to PCA:

— Use an eigendecomposition / dimensionality
reduction

e But, run on Laplacian (not covariance); use smallest eigenvectors,
not largest

* Intuition: Laplacian encodes structure information

— “Lower” eigenvectors give partitioning information



Spectral Clustering

Q: Why do this?
— 1. No need for points or distances as input
— 2. Can handle intuitive separation (k-means can’t!)

K-Means Circles Spectral Circles

Credit: William Fleshman



