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Announcements

* Homeworks:
— HW3 recap
— HW4 released: clustering

e Class roadmap:

Thursday, Feb 18 ML Intro
Thursday, Feb 25 ML Linear Regression
Tuesday, March 2 ML: Naive Bayes, Recap
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Outline

* Finish up Other Clustering Types

— Graph-based, cuts, spectral clustering

* Unsupervised Learning: Visualization
— t-SNE, algorithm, example, vs. PCA

* Unsupervised Learning: Density Estimation
— Kernel density estimation: high-level intro



Other Types of Clustering

Graph-based/proximity-based
* Recall: Graph G = (V,E) has vertex set V, edge set E.

— Edges can be weighted or unweighted

— Encode similarity 0'0

e Don’t need vectors here © ovﬂ
— Just edges (and maybe weights)
N



Graph-Based Clustering
o

Want: partition Vinto V, and V,
* Implies a graph “cut”

* One idea: minimize the weight of
the cut
— Downside: might just cut of one node
— Need: “balanced” cut




Partition-Based Clustering

Want: partition Vinto V, and V,
e Just minimizing weight isn’t good... want balance!
* Approaches:

Cut(Vi, a) N Cut(V1, Va)
Vi 123

Cut(Vl, Vg) n CUt<V17 V2)
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Partition-Based Clustering

How do we compute these?

* Hard problem = heuristics
— Greedy algorithm

— “Spectral” approaches

e Spectral clustering approach:
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Partition-Based Clustering

e Spectral clustering approach:
— Adjacency matrix
— Degree matrix
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Spectral Clustering

e Spectral clustering approach:
— 1. Compute Laplacian L=D - A
(Important tool in graph theory)
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Spectral Clustering

e Spectral clustering approach:

— 1. Compute Laplacian L=D - A
— 2. Compute k smallest eigenvectors

— 3. Set U to be the n x k matrix with uy, ..., u, as
columns. Take the n rows formed as points

— 4. Run k-means on the representations



Spectral Clustering

* Compare/contrast to PCA:

— Use an eigendecomposition / dimensionality
reduction

e But, run on Laplacian (not covariance); use smallest eigenvectors,
not largest

* Intuition: Laplacian encodes structure information

— “Lower” eigenvectors give partitioning information



Spectral Clustering

Q: Why do this?
— 1. No need for points or distances as input
— 2. Can handle intuitive separation (k-means can’t!)

K-Means Circles Spectral Circles

Credit: William Fleshman



Unsupervised Learning Beyond Clustering

Data analysis, dimensionality
reduction, etc
e Already talked about PCA

* Note: PCA can be used for
visualization, but not specifically
designed for it

* Some algorithms specifically for

visualization Philip Slingerland



Dimensionality Reduction & Visualization

Typical dataset: MNIST
 Handwritten digits 0-9
— 60,000 images (small by ML standards)

— 28x28 pixel (784 dimensions) 0 ® 0 0 0 6 O 2P O 0 O 2
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Visualization: T-SNE

Typical dataset: MNIST

* T-SNE: project data into just 2 dimensions

* Try to maintain structure

MNIST Example
* Input: x;, X, ..., X,
Output: 2D/3Dvy,, Y,, ..., Y,

label
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T-SNE Algorithm: Step 1

How does it work? Two steps X,
X1
* 1. Turn vectors into probability pairs e o ®
e 2. Turn pairs back into (lower-dim) vectors °
X3

Step 1:

- exp(—||lz; — z;]°/207) pij = i(p.|. i)

- 1 1
1 Y exp(= i — zi2/207) 2n 1T

Intuition: probability that x; would pick x; as its neighbor under
a Gaussian probability



T-SNE Algorithm: Step 2

How does it work? Two steps
* 1. Turn vectors into probability pairs

e 2. Turn pairs back into (lower-dim) vectors
(1 + [lys — w5 l1°) "
D e+ llyk — vell?) 1

Step 2: set

and minimize

4ij =

ZZpgzlog

Djli

dj\i

KL Divergence
between p and q



T-SNE Algorithm: Step 2

More on step 2.: o N Z me log Pjli
 We have two distributions p, g. p is fixed P djli
* qis afunction of the y,which we move around
* Move y; around until the KL divergence is small T

— So we have a good representation! KL Divergence

between p and g

* Optimizing a loss function---we’ll see more in
supervised learning.



T-SNE Examples

 Examples: (from Laurens van der Maaten)

* Movies:
https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg
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T-SNE Examples

 Examples: (from Laurens van der Maaten)

* NORSB:
https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg



Visualization: T-SNE

Gaussian blobs different sizes - tSNE

t-SNE vs PCA?

* “Local” vs “Global” %

* Lose information in t-SNE %
— not a bad thing necessarily |

o D OW n St r‘e a m u S e ) Gaussian blobs different sizes - PCA

Good resource/credit: oy
https://www.thekerneltrip.com/statistics/tsne-vs-pca/ - ¥




Short Intro to Density Estimation

Goal: given samples x, ..., x, from some distribution P,
estimate P.

 Compute statistics (mean, variance)
* Generate samples from P [\
 Run inference




Simplest Idea: Histograms

Goal: given samples x, ..., x, from some distribution P,
estimate P.

| Histogram
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Define bins; count # of samples in each bin, normalize



Simplest Idea: Histograms

Goal: given samples x, ..., x, from some distribution P,
estimate P.

Histogram
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Downsides:
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i) High-dimensions: most
bins empty

Normalized Density
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ii) Not continuous
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iii) How to choose bins?



Kernel Density Estimation

Goal: given samples x, ..., x, from some distribution P,
estimate P.

Idea: represent density as combination of “kernels”

B ] — T — T; \ = Center at
flz) = nh 2?( h each point

Kernel function: often Width
Gaussian parameter




Kernel Density Estimation

Idea: represent density as combination of kernels

* “Smooth” out the histogram
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