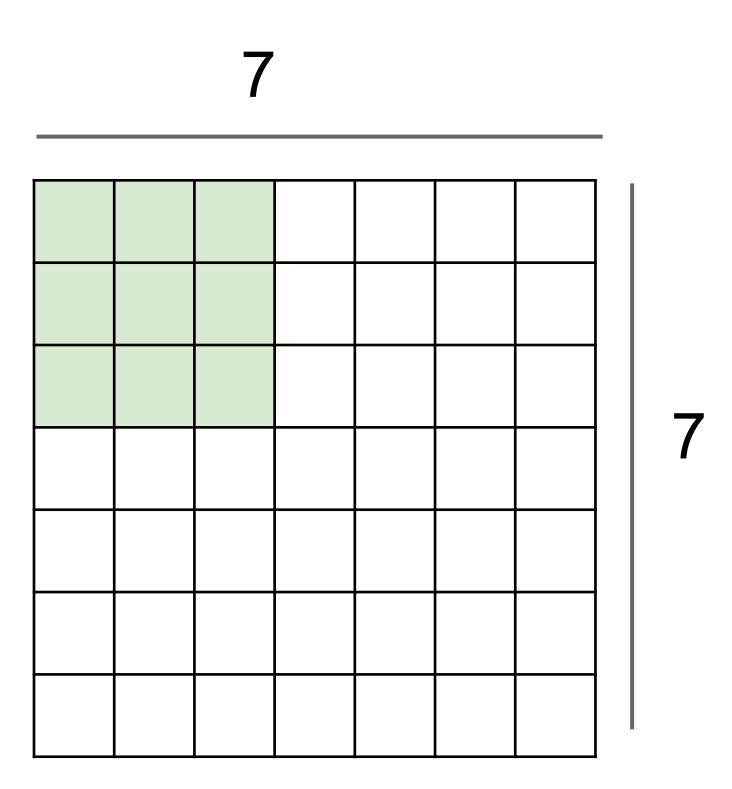

Q1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3

B.7x7

C.5x5

D.2x2


Q1. Suppose we want to perform convolution on a single channel image of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is the dimension of the output?

A.3x3

B.7x7

C.5x5

D.2x2

$$[(n_h - k_h + p_h + s_h)/s_h] \times [(n_w - k_w + p_w + s_w)/s_w]$$

Q3-1. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

- A. 64x3x3x222x222
- B. 64x3x3x222
- C. 3x3x222x222
- D. 64x3x3x3x222x222

Q3-1. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?

- A. 64x3x3x222x222
- B. 64x3x3x222
- C. 3x3x222x222
- D. 64x3x3x3x222x222

Q 3-2. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of learnable parameters?

- A. 64x222x222
- B. 64x3x3x222
- C. 3x3x3x64
- D. (3x3x3+1)x64

Q 3-2. Suppose we want to perform convolution on a RGB image of size 224x224 (no padding) with 64 kernels of size 3x3. Stride = 1. Which is a reasonable estimate of the total number of learnable parameters?

- A. 64x222x222
- B. 64x3x3x222
- C. 3x3x3x64
- D. (3x3x3+1)x64

Q2-1. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

20	30
70	90

В.

16	8
20	25

) .	20	30
	20	25

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q2-1. Suppose we want to perform 2x2 average pooling on the following single channel feature map of size 4x4 (no padding), and stride = 2. What is the output?

20	30
70	90

16	8
20	25

) .	20	30
	20	25

12	2
70	5

Q2-2. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

20	30
70	90

16	8
20	25

) .	20	30
	20	25

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

Q2-2. What is the output if we replace average pooling with 2 x 2 max pooling (other settings are the same)?

Α.

20	30
70	90

B.

16	8
20	25

C.

· •	20	30
	20	25

D.

12	2
70	5

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3