

CS540 Introduction to Artificial Intelligence Convolutional Neural Networks (II)

Sharon Yixuan Li University of Wisconsin-Madison

March 23, 2021

Outline

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet

How to classify Cats vs. dogs?

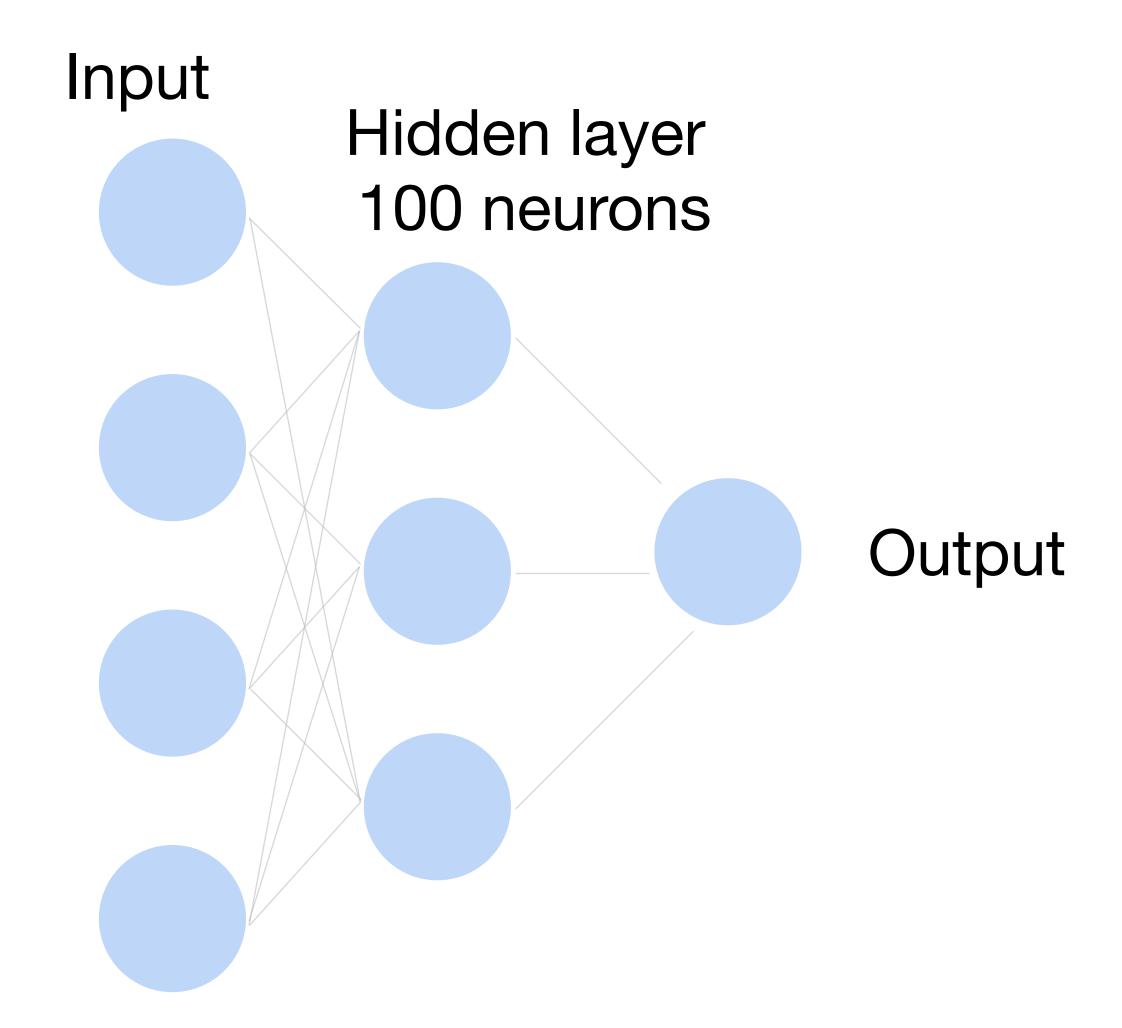
12MP

wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?



36M elements x 100 = 3.6B parameters!

Review: 2-D Convolution

Input

0	1	2
3	4	5
6	7	8

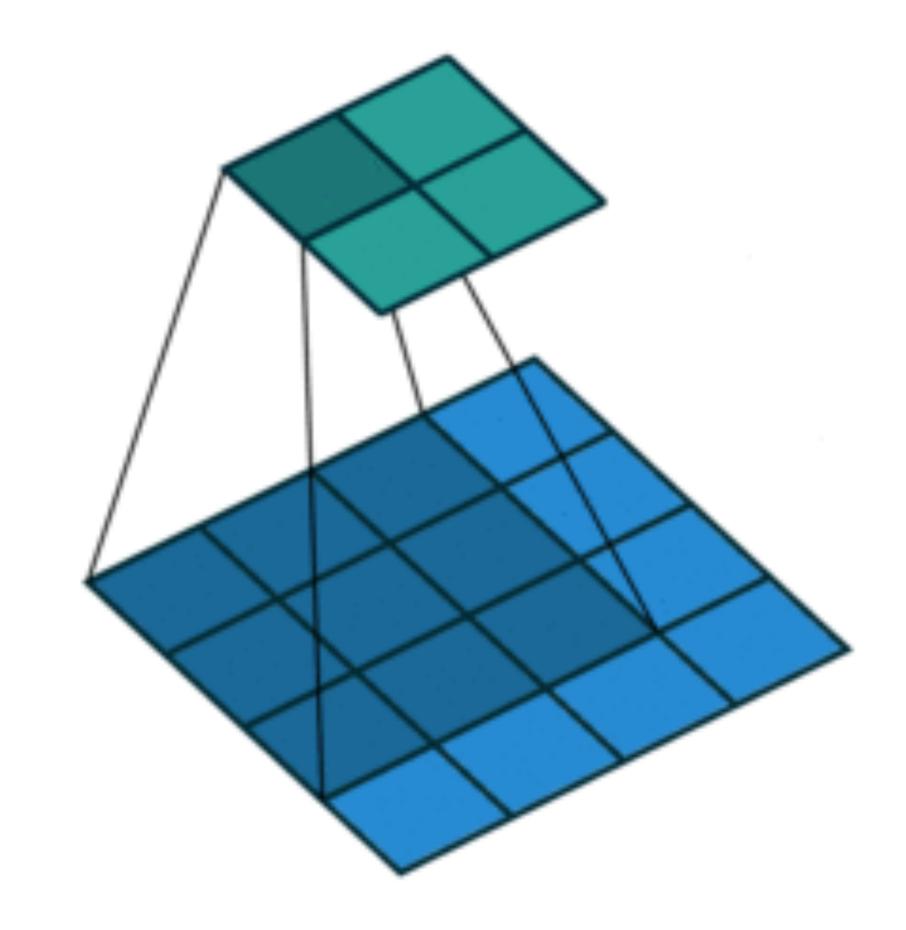
Kernel

Output

19	25
37	43

$$0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$$

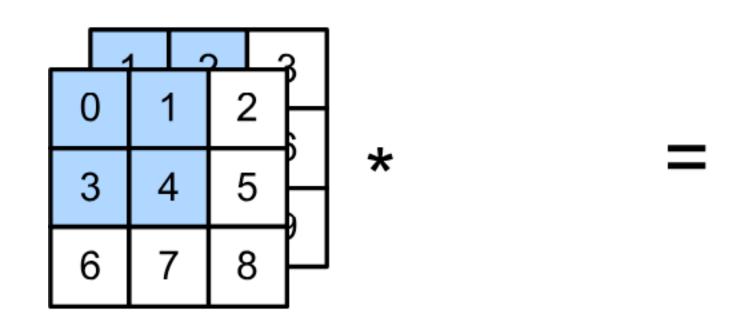
 $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$
 $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$
 $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$



(vdumoulin@ Github)

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

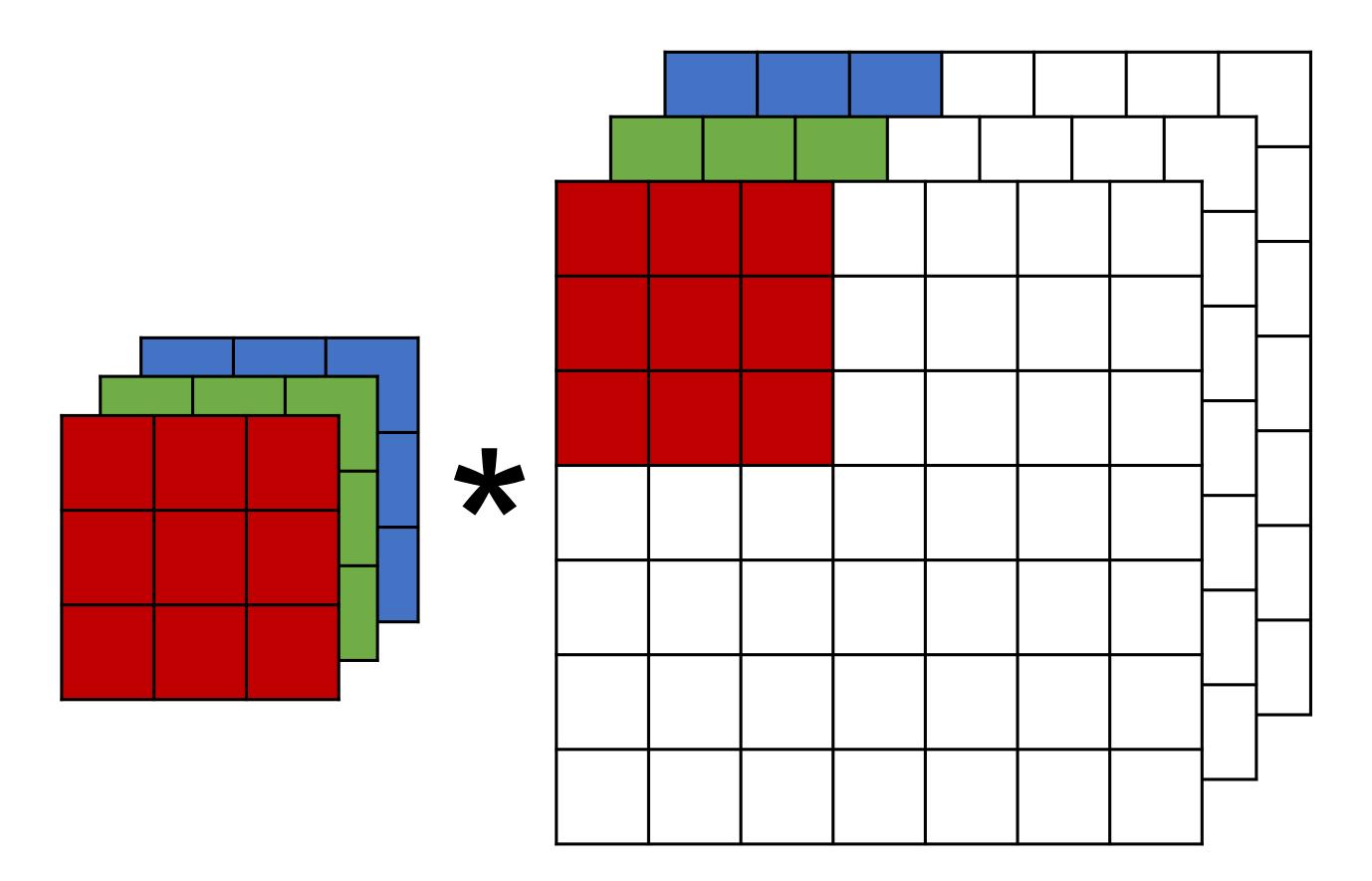
Input



Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a kernel for each channel, and then sum results over

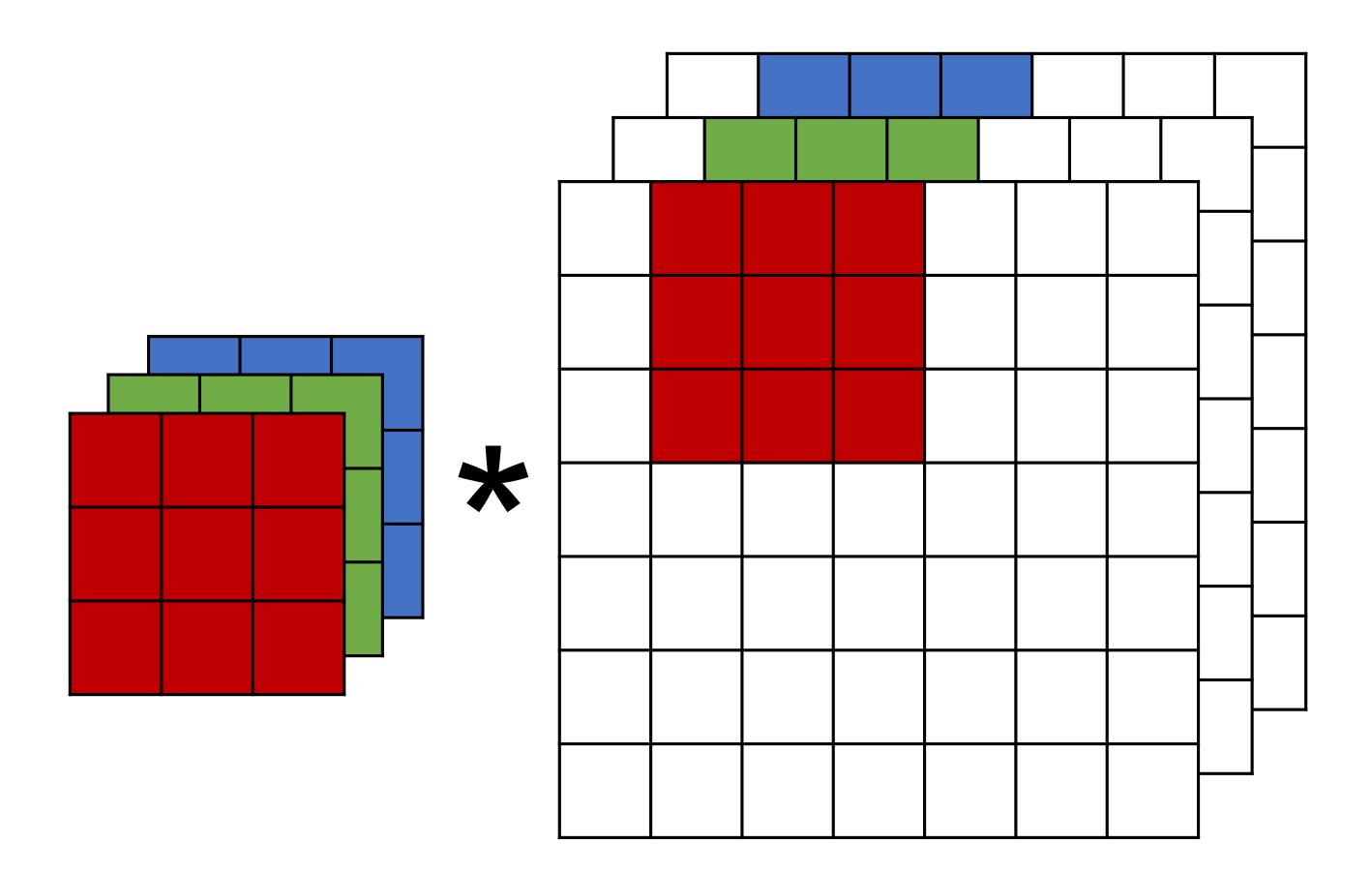
channels



Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a kernel for each channel, and then sum results over

channels



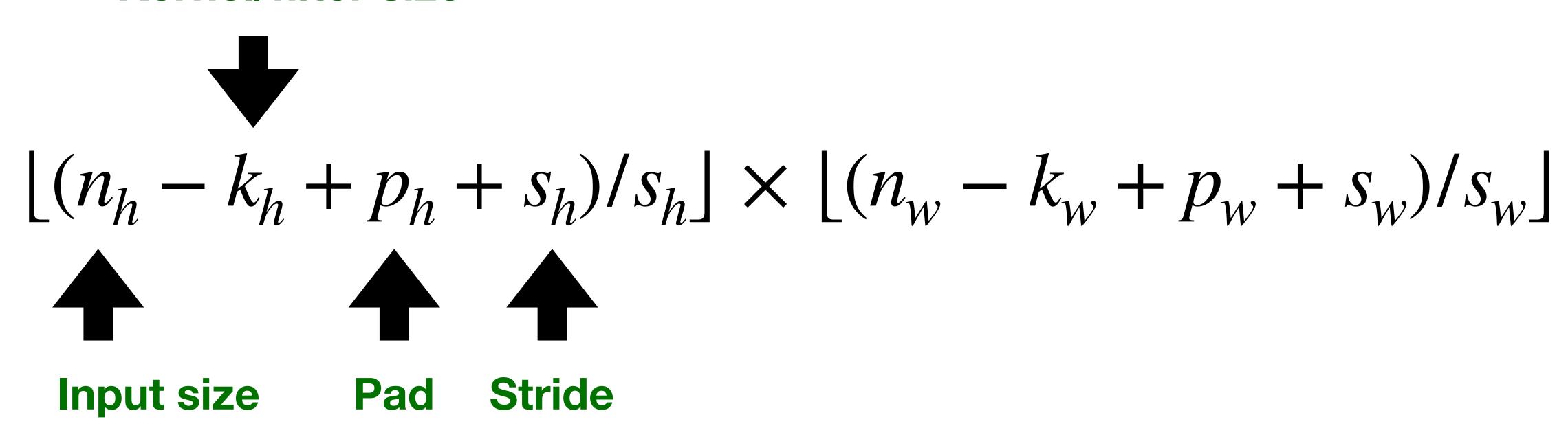
Input and kernel can be 3D, e.g., an RGB image have 3 channels

Have a kernel for each channel, and then sum results over

channels

Output shape

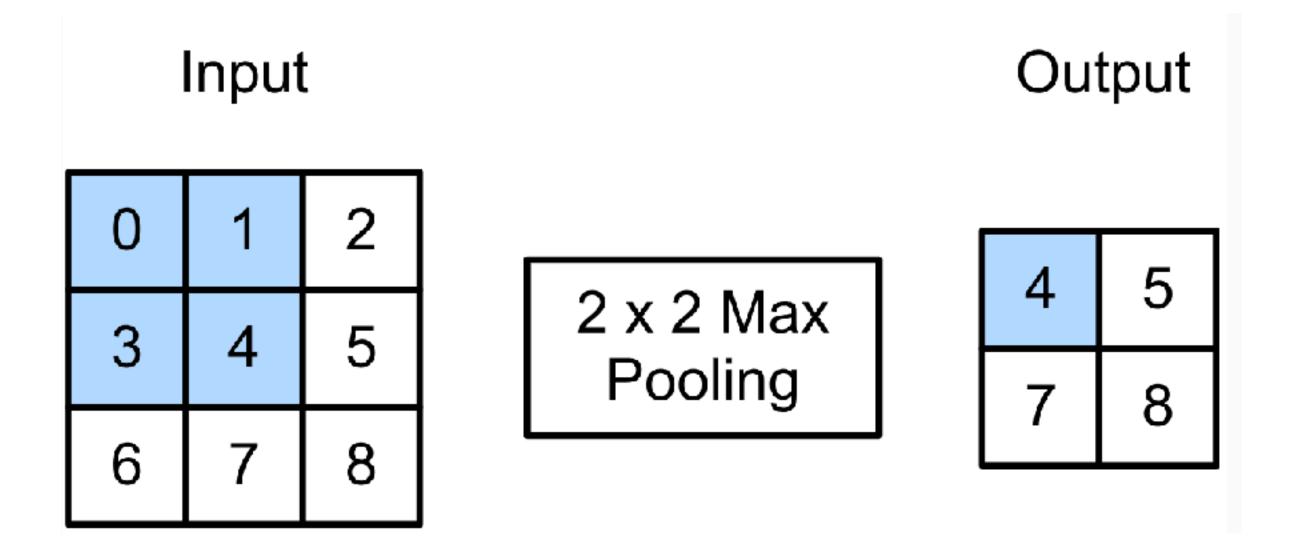
Kernel/filter size



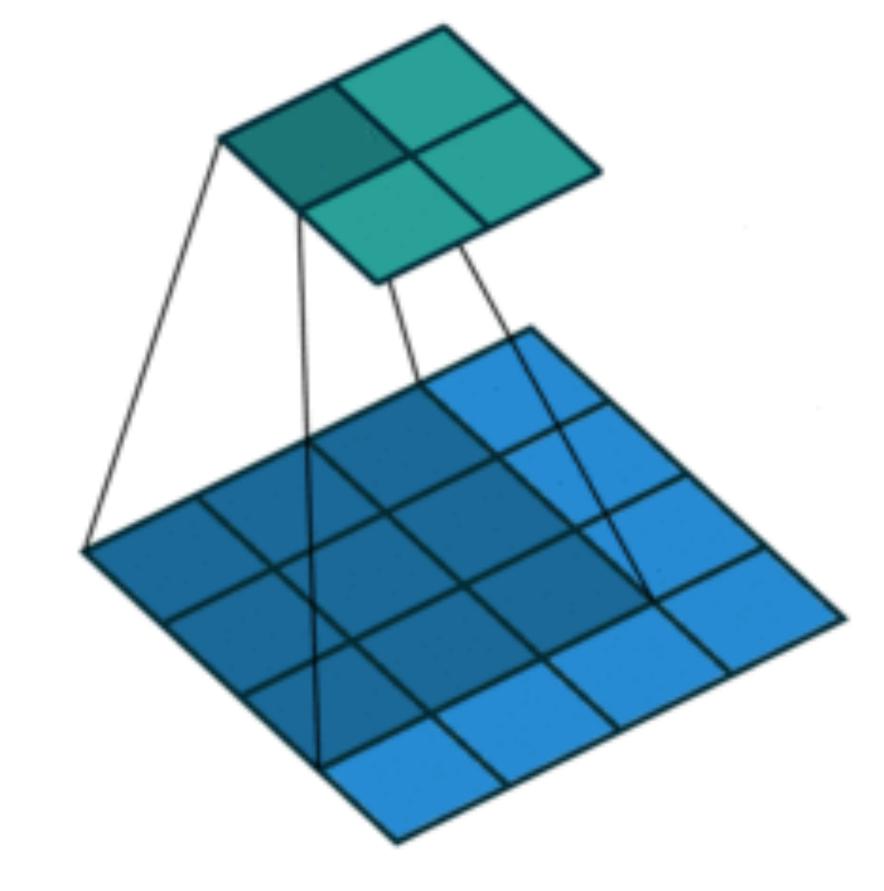


2-D Max Pooling

Returns the maximal value in the sliding window



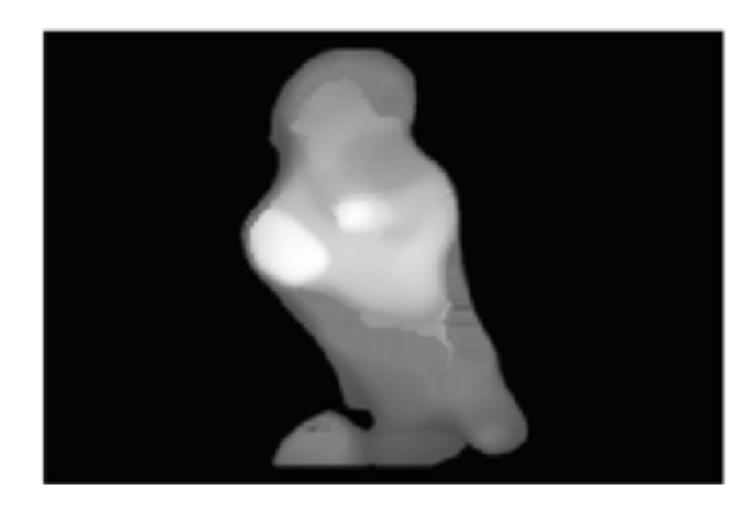
 $\max(0,1,3,4) = 4$



Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
 - The average signal strength in a window

Max pooling



Average pooling

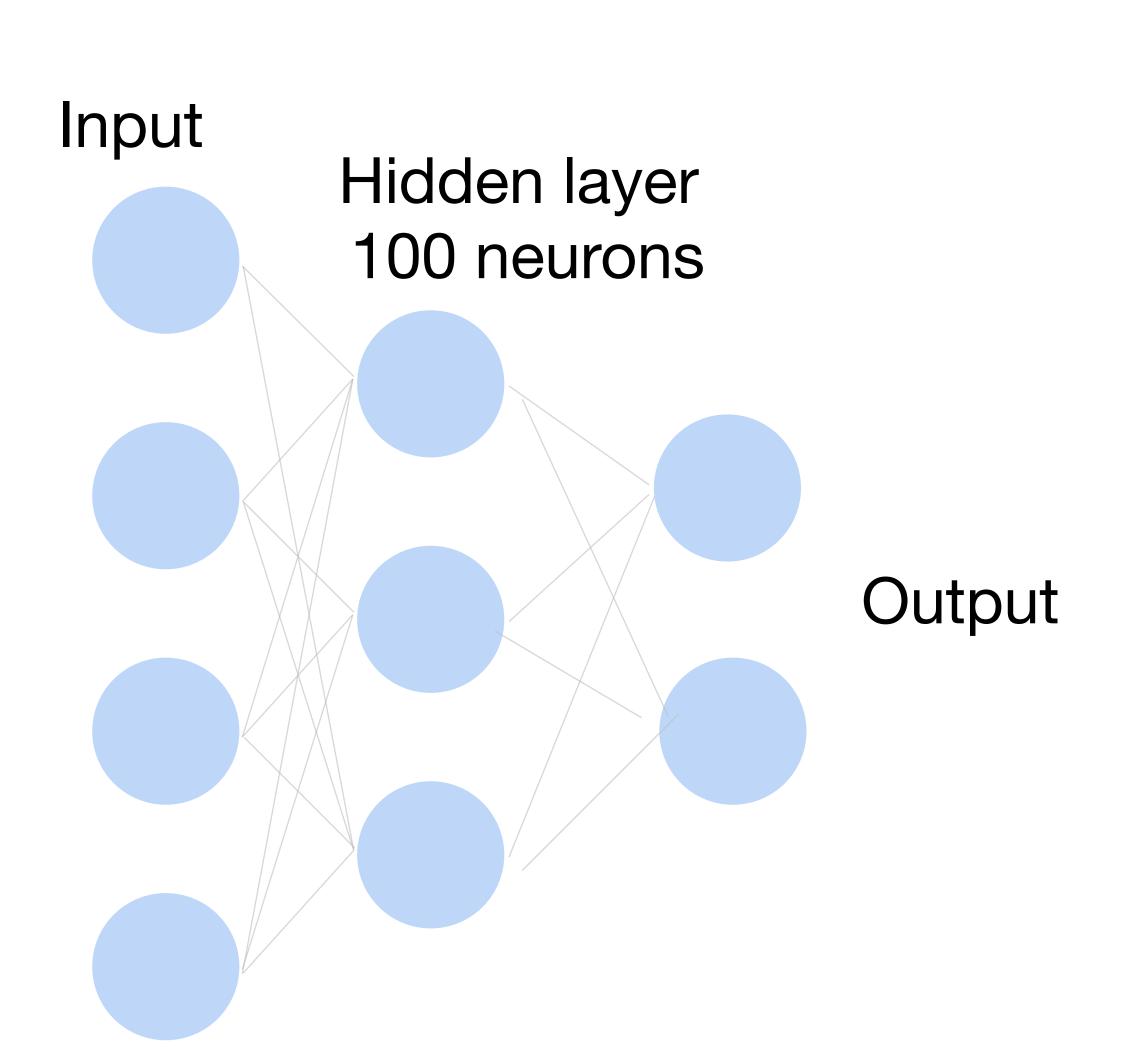
How to train a neural network?

Loss function:
$$\frac{1}{|D|} \sum_{i} \ell(\mathbf{x}_{i}, y_{i})$$

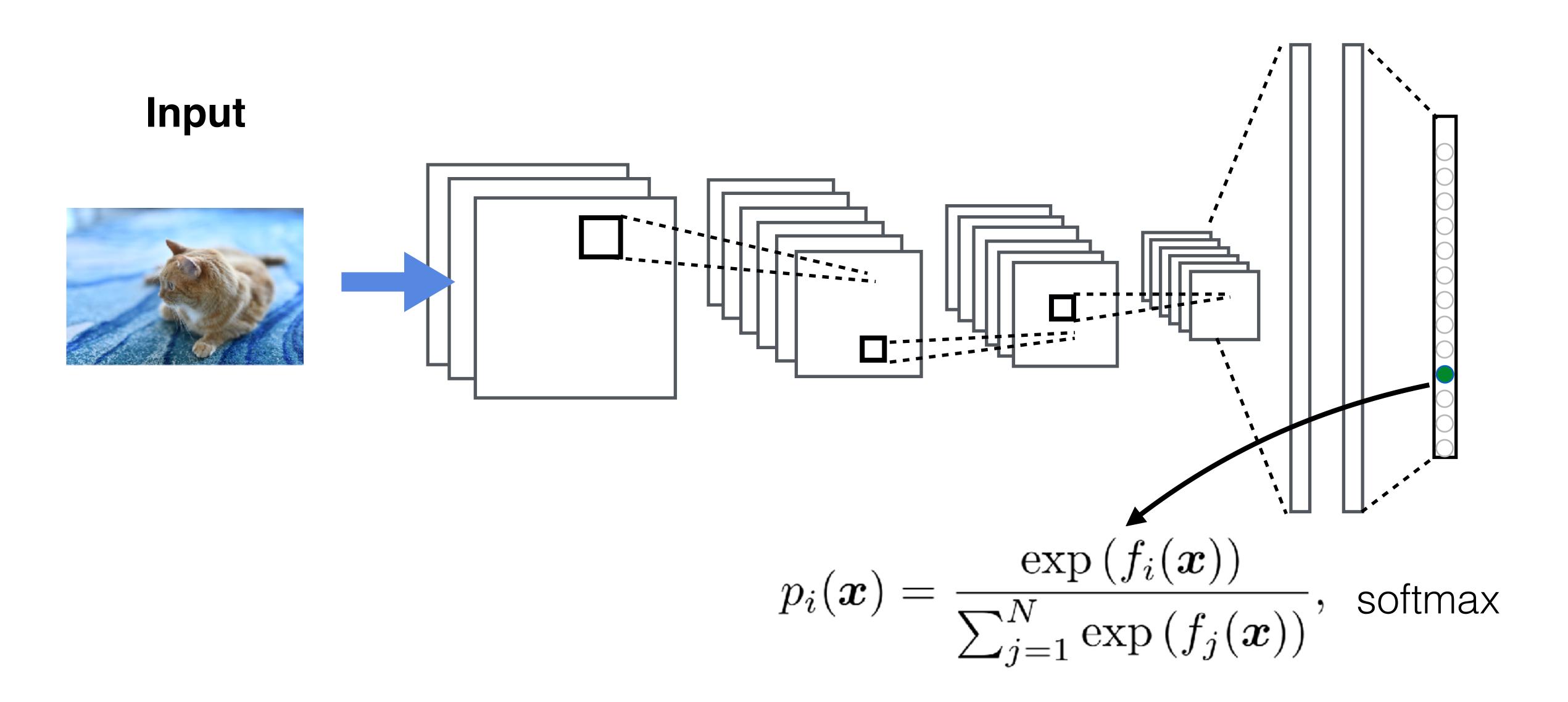
Per-sample loss:

$$\mathcal{E}(\mathbf{x}, y) = \sum_{j=1}^{K} -y_j \log p_j$$

Also known as cross-entropy loss or softmax loss

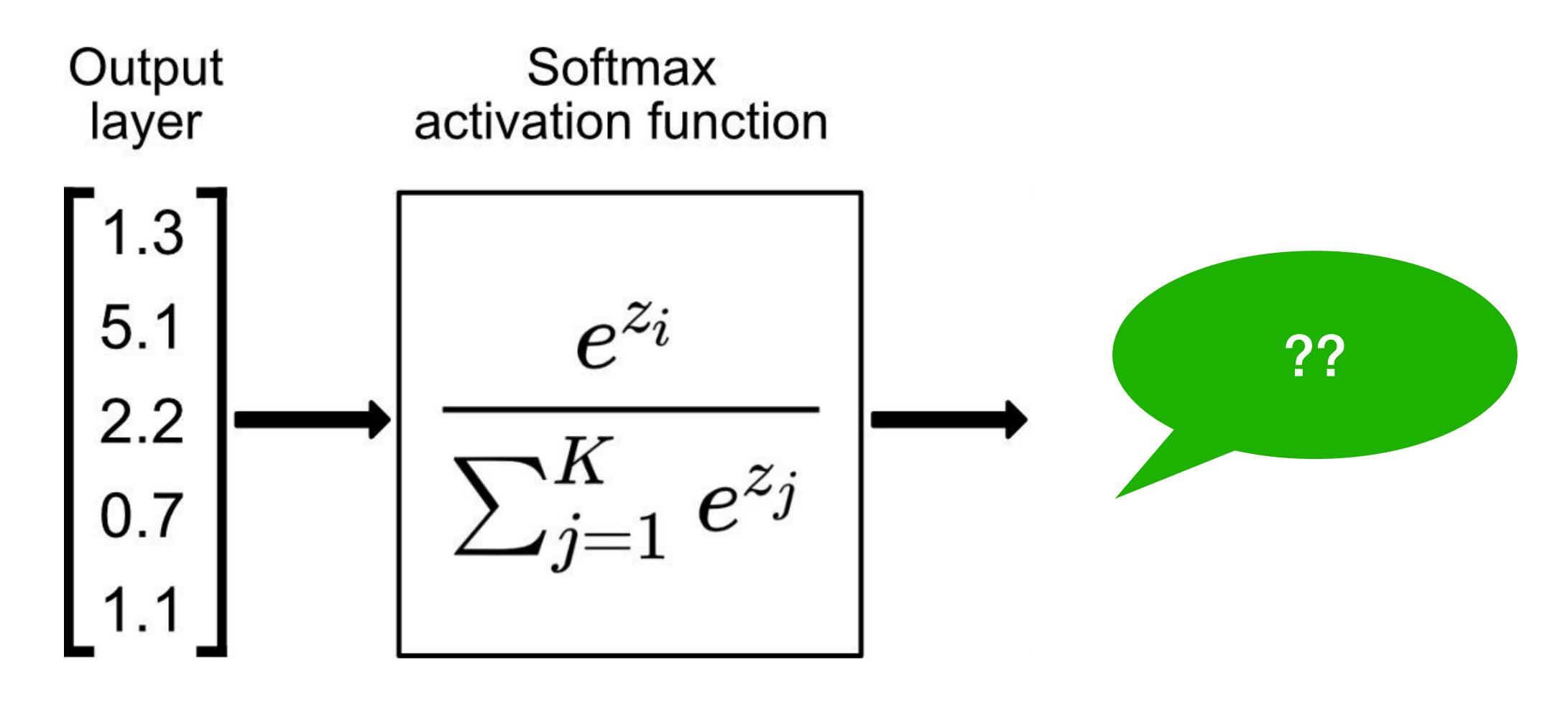


How to train a convolutional neural network?



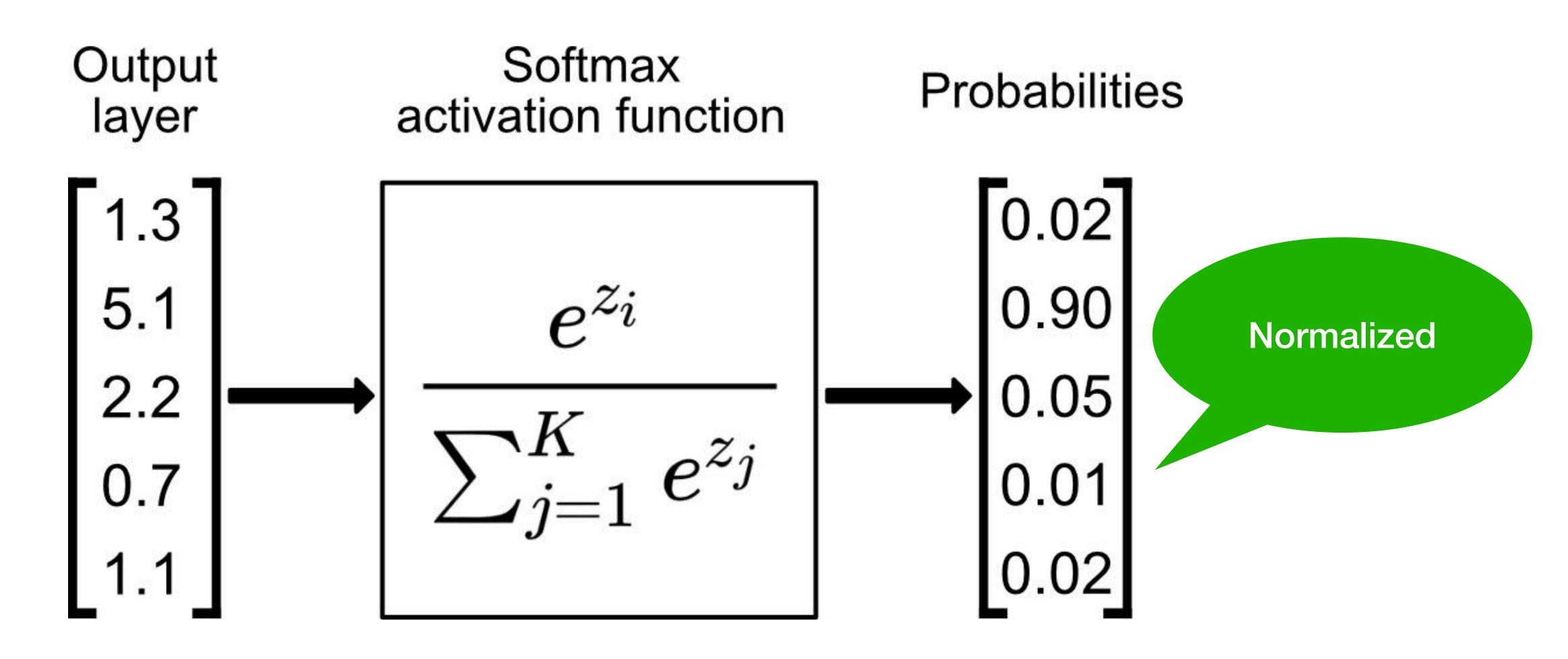
Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

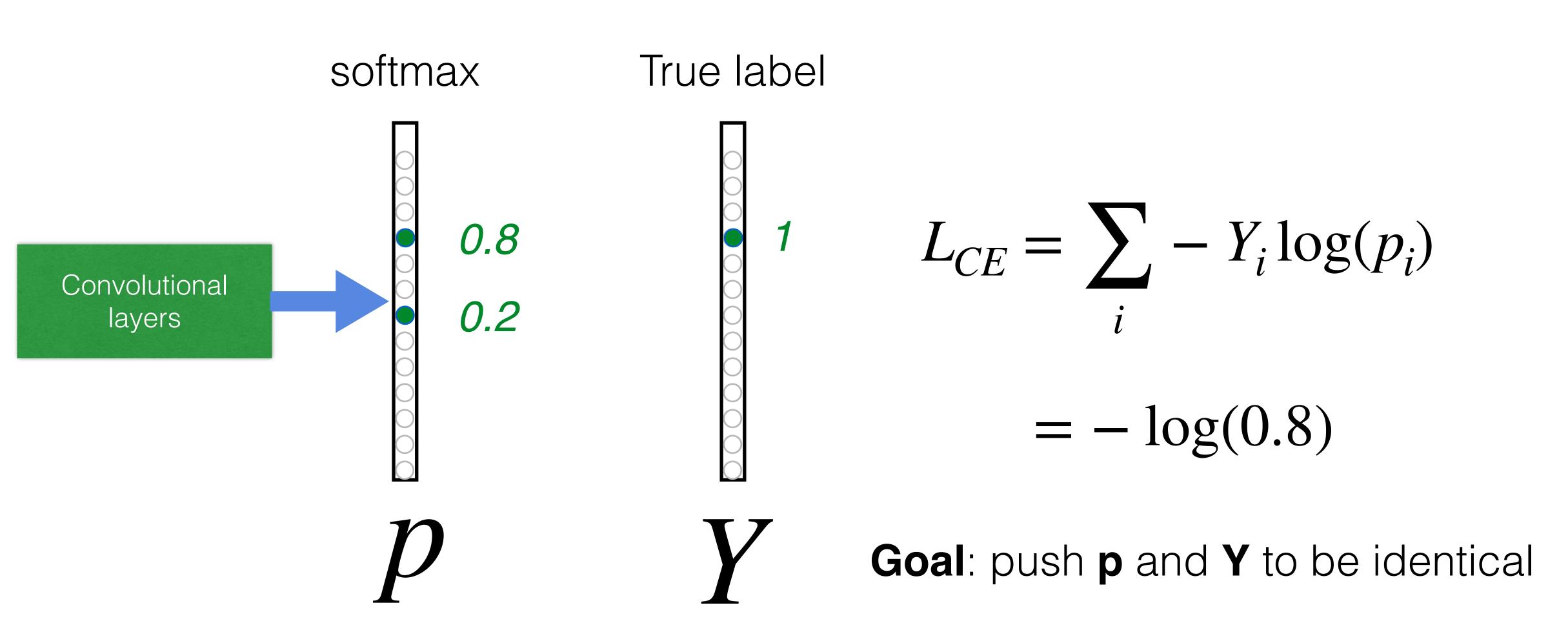


Recall Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

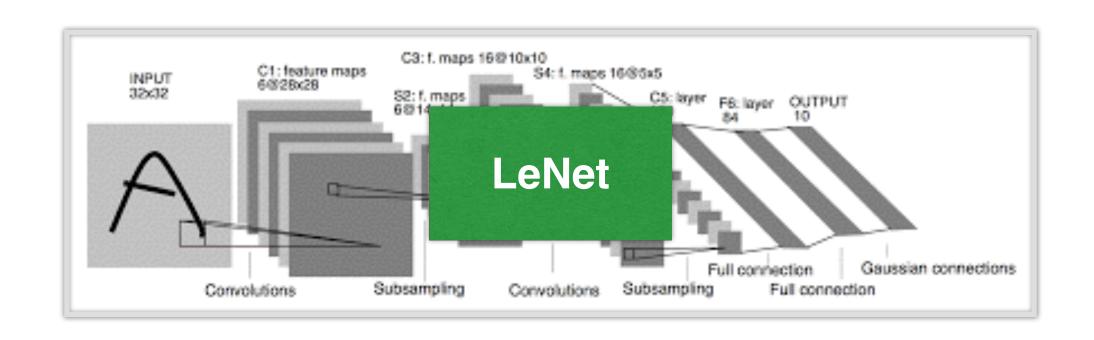


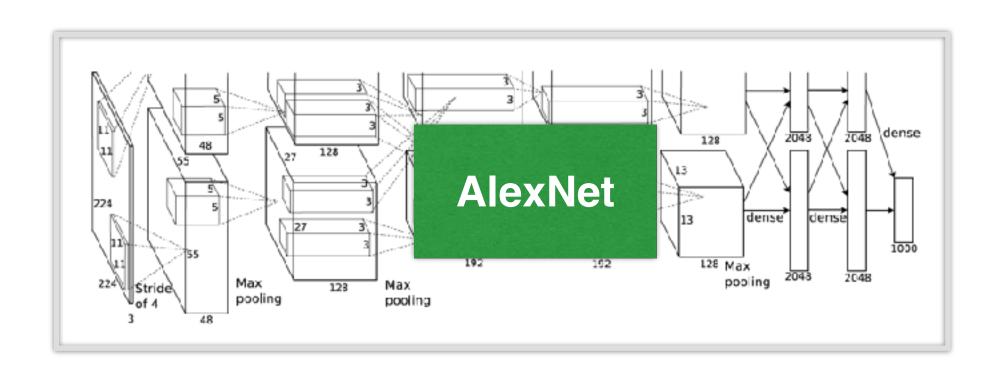
Cross-Entropy Loss

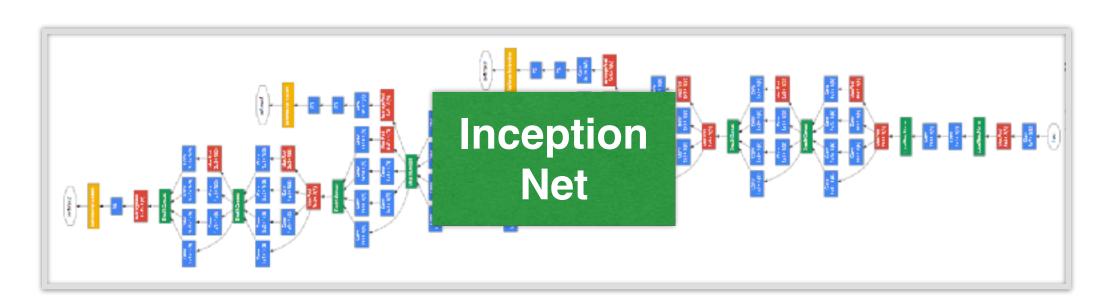


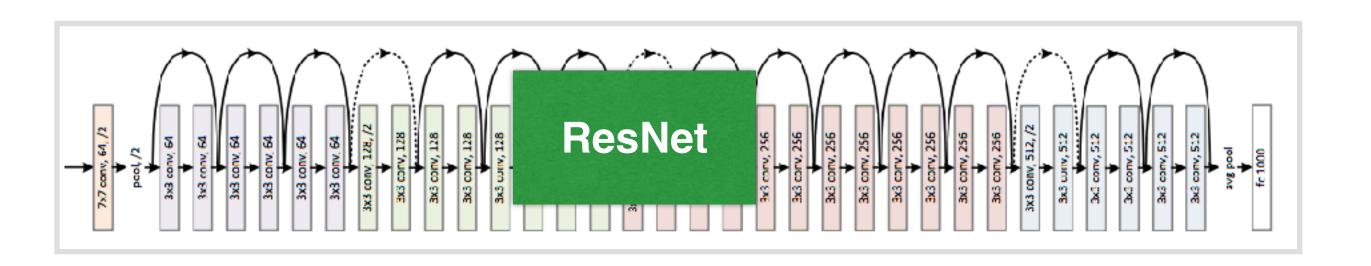
Convolutional Neural Networks

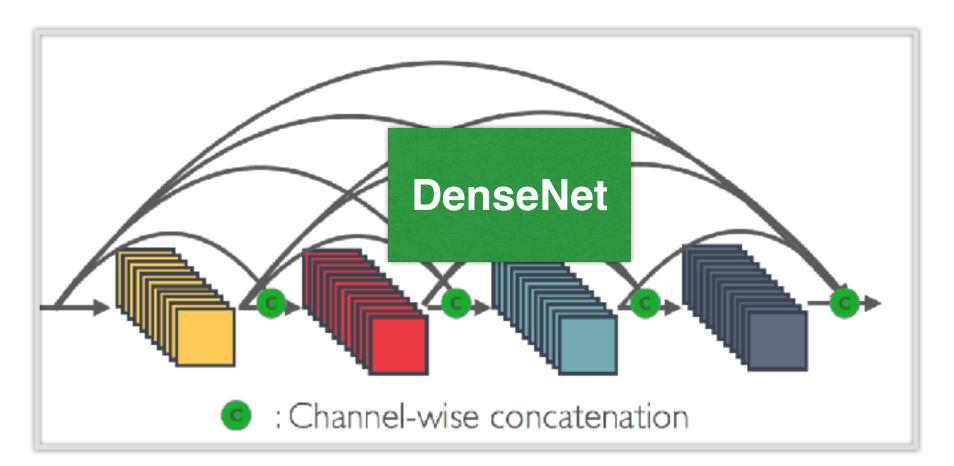
Evolution of neural net architectures



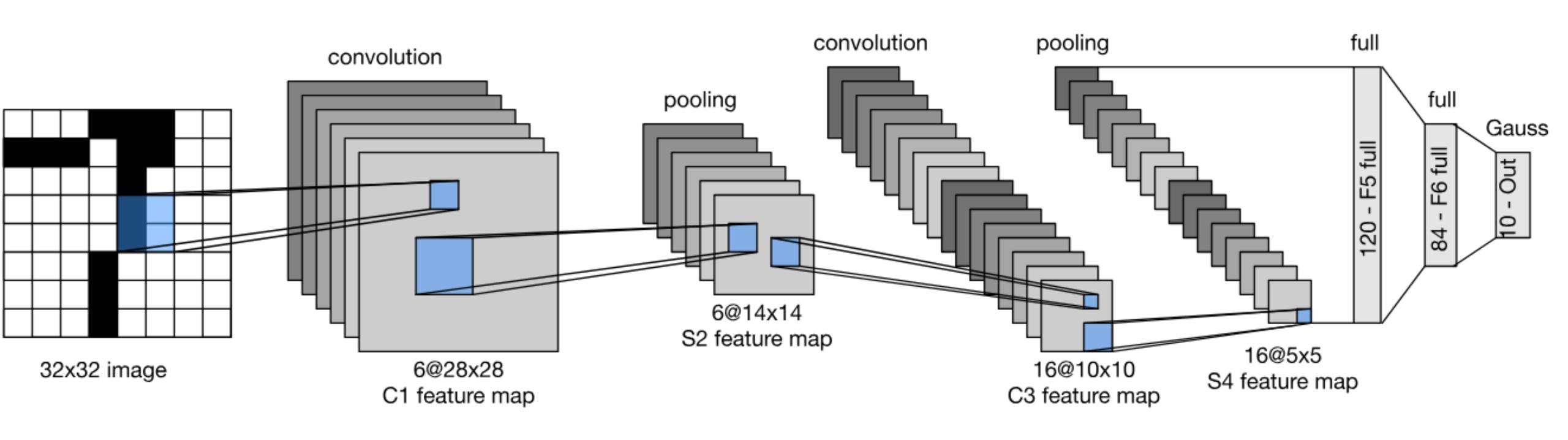




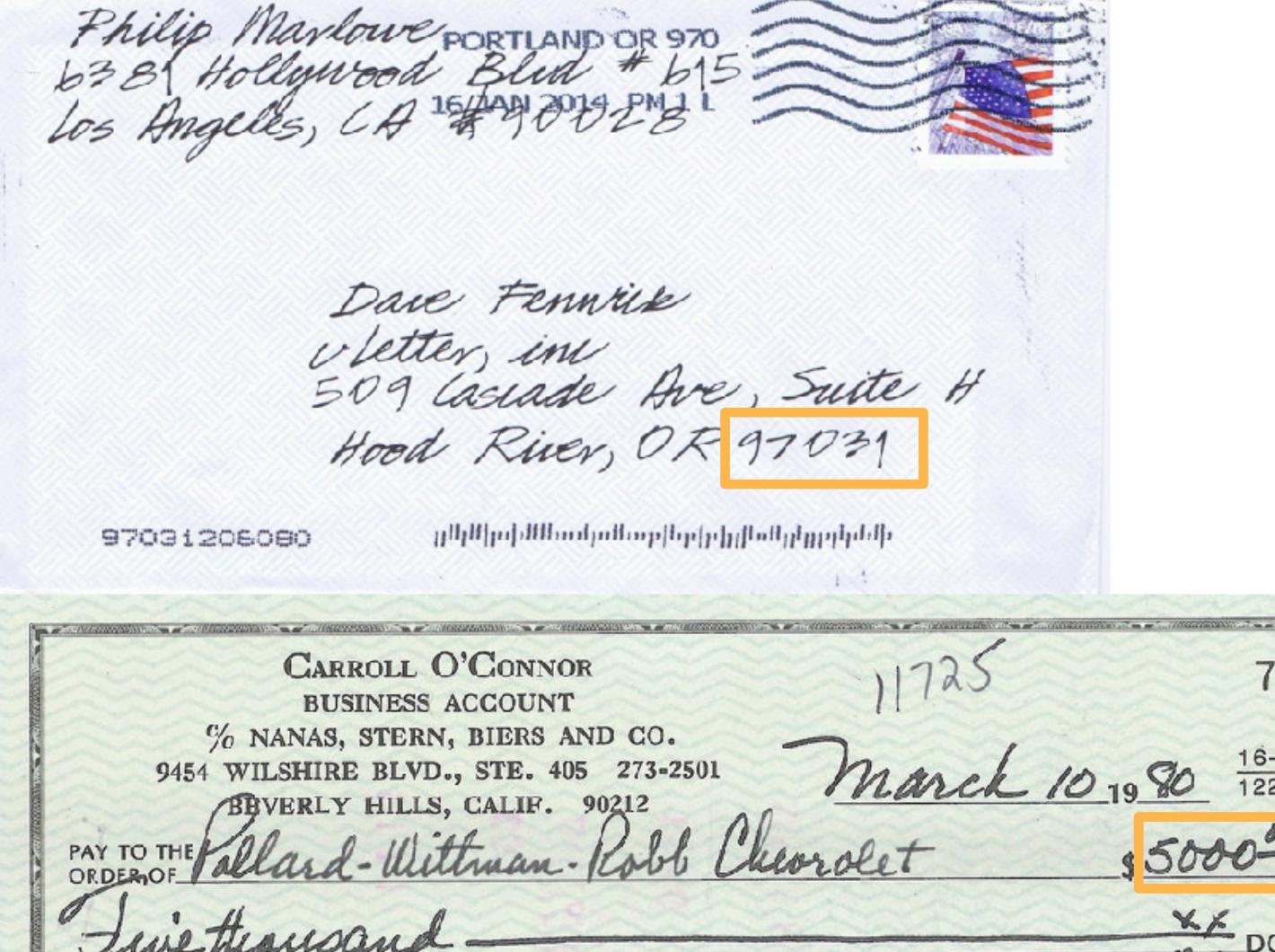




LeNet Architecture (first conv nets)



Handwritten Digit Recognition

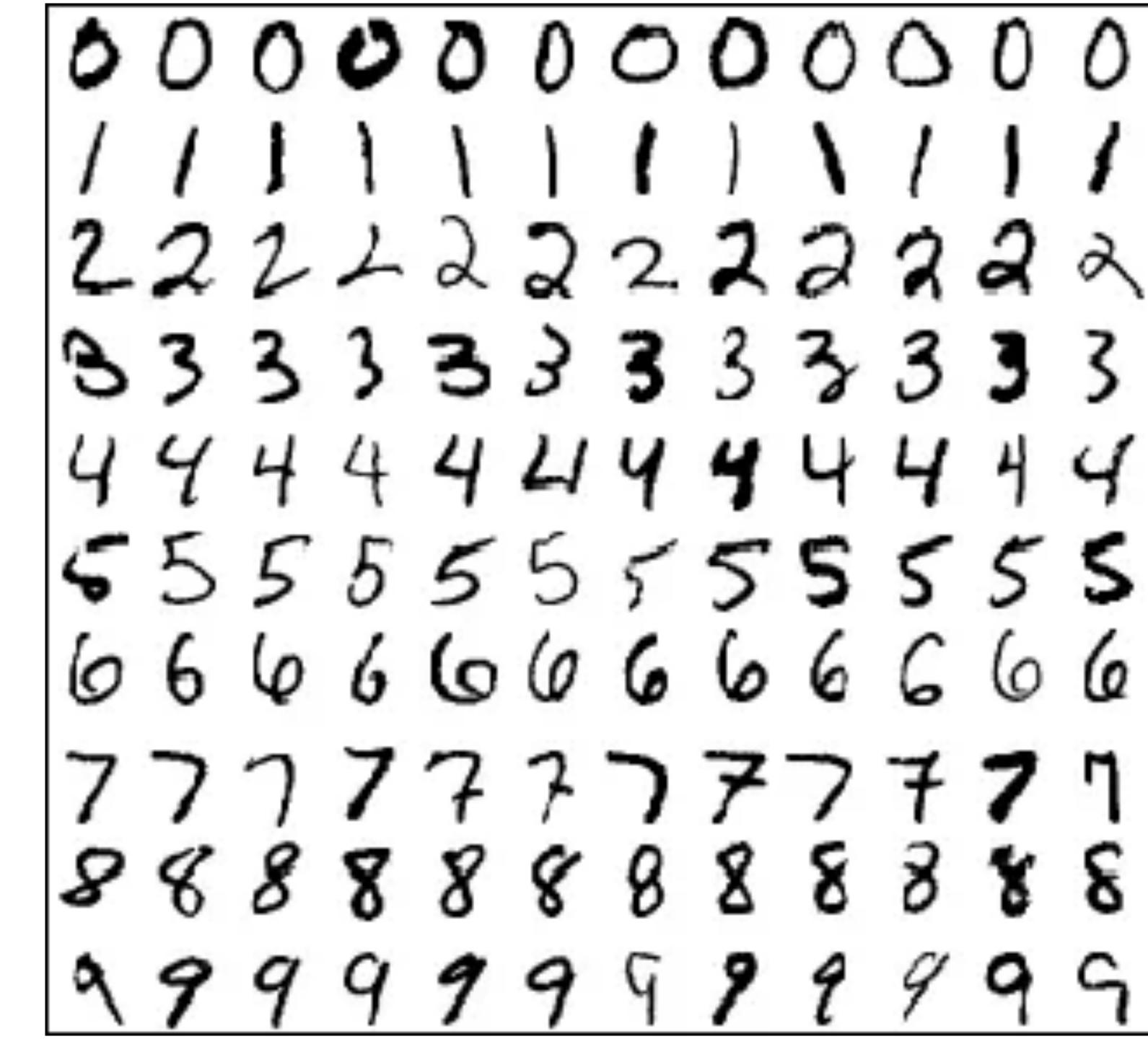


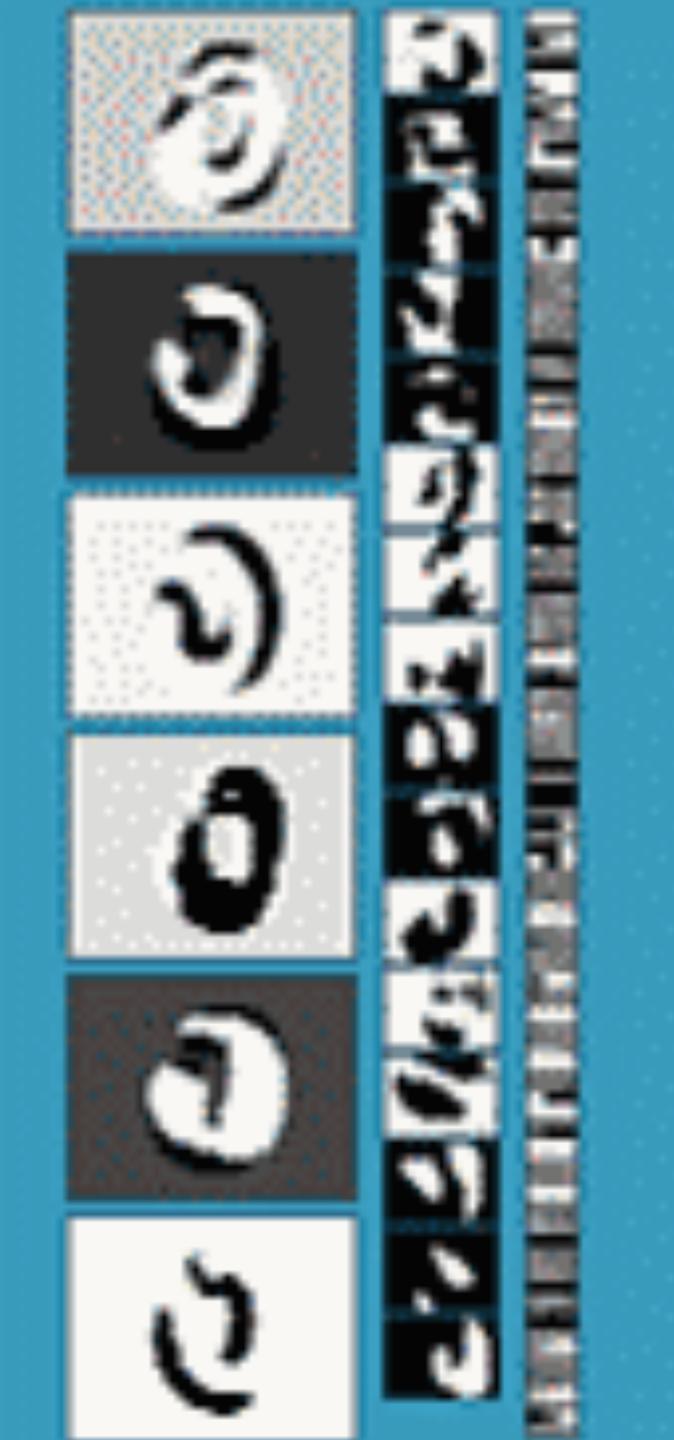
DELLITE CHECK PRINTERS - 1H

"0000500000"

MNIST

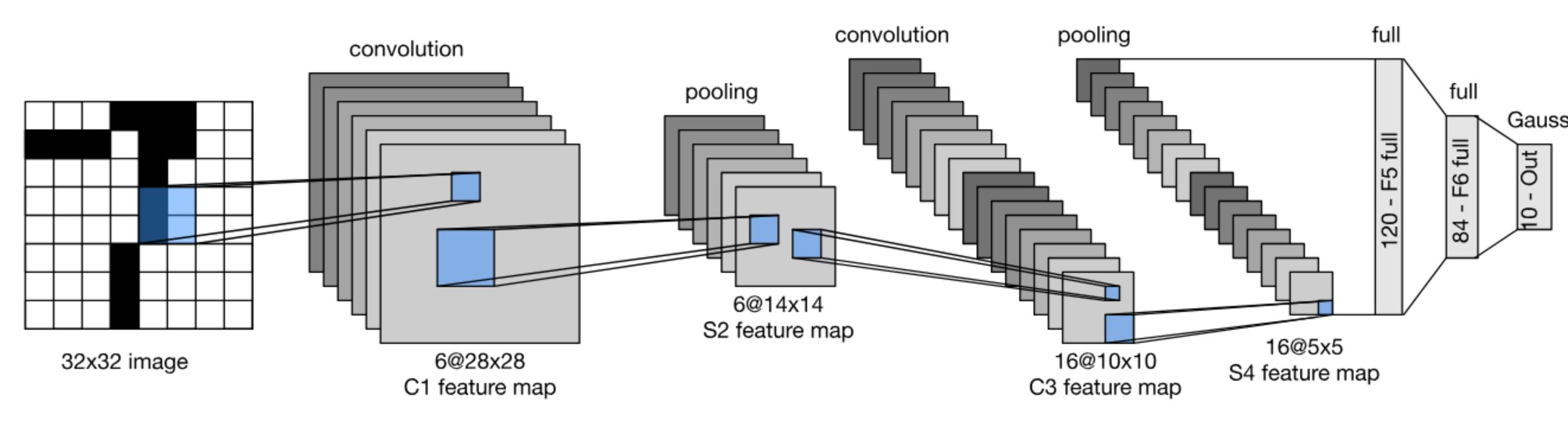
- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28 x 28 images
- 10 classes





Y. LeCun, L.
Bottou, Y. Bengio,
P. Haffner, 1998
Gradient-based
learning applied to
document
recognition

LeNet Architecture



LeNet in Pytorch

```
def __init__(self):
    super(LeNet5, self).__init__()
    # Convolution (In LeNet-5, 32x32 images are given as input. Hence padding of 2 is done below)
    self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
    # Max-pooling
    self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
    # Convolution
    self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
    # Max-pooling
    self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
    # Fully connected layer
    self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (col
    self.fc2 = torch.nn.Linear(120, 84)
                                             # convert matrix with 120 features to a matrix of 84 features (columns)
    self.fc3 = torch.nn.Linear(84, 10)
                                             # convert matrix with 84 features to a matrix of 10 features (columns)
```

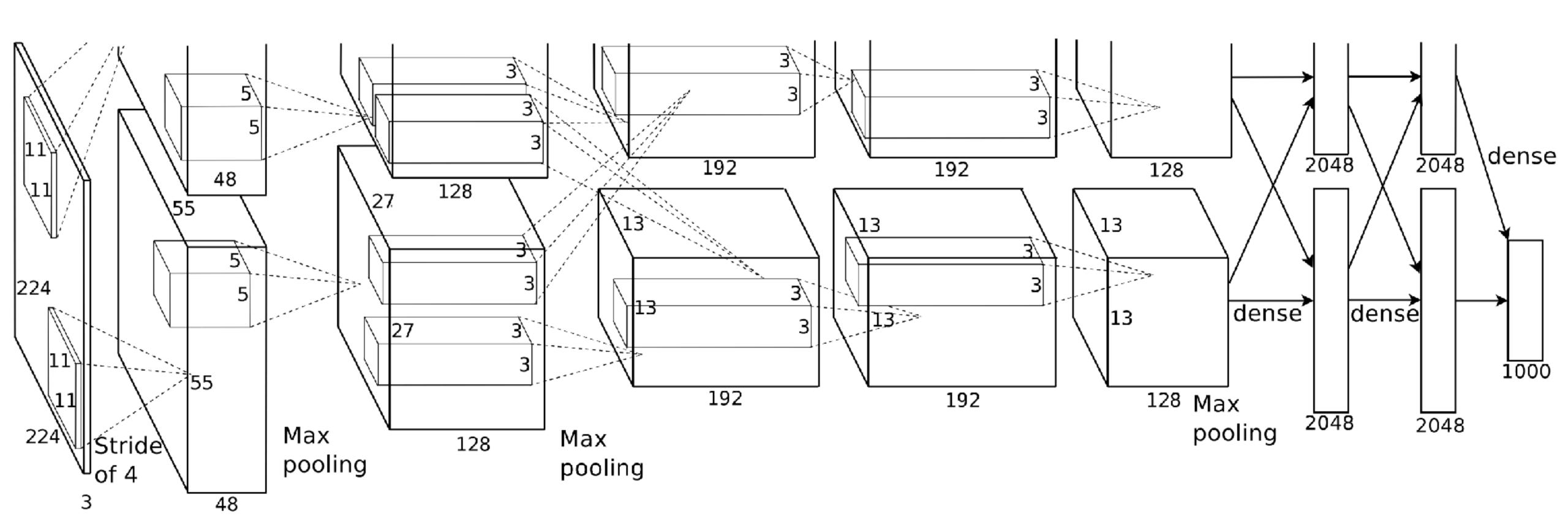
```
def forward(self, x):
   # convolve, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.conv1(x))
   # max-pooling with 2x2 grid
   x = self.max_pool_1(x)
   # convolve, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.conv2(x))
   # max-pooling with 2x2 grid
   x = self.max_pool_2(x)
   # first flatten 'max_pool_2_out' to contain 16*5*5 columns
   # read through https://stackoverflow.com/a/42482819/7551231
   x = x.view(-1, 16*5*5)
   # FC-1, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.fc1(x))
   # FC-2, then perform ReLU non-linearity
   x = torch.nn.functional.relu(self.fc2(x))
   # FC-3
   x = self.fc3(x)
```

LeNet in Pytorch

Let's walk through an example using PyTorch

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

AlexNet



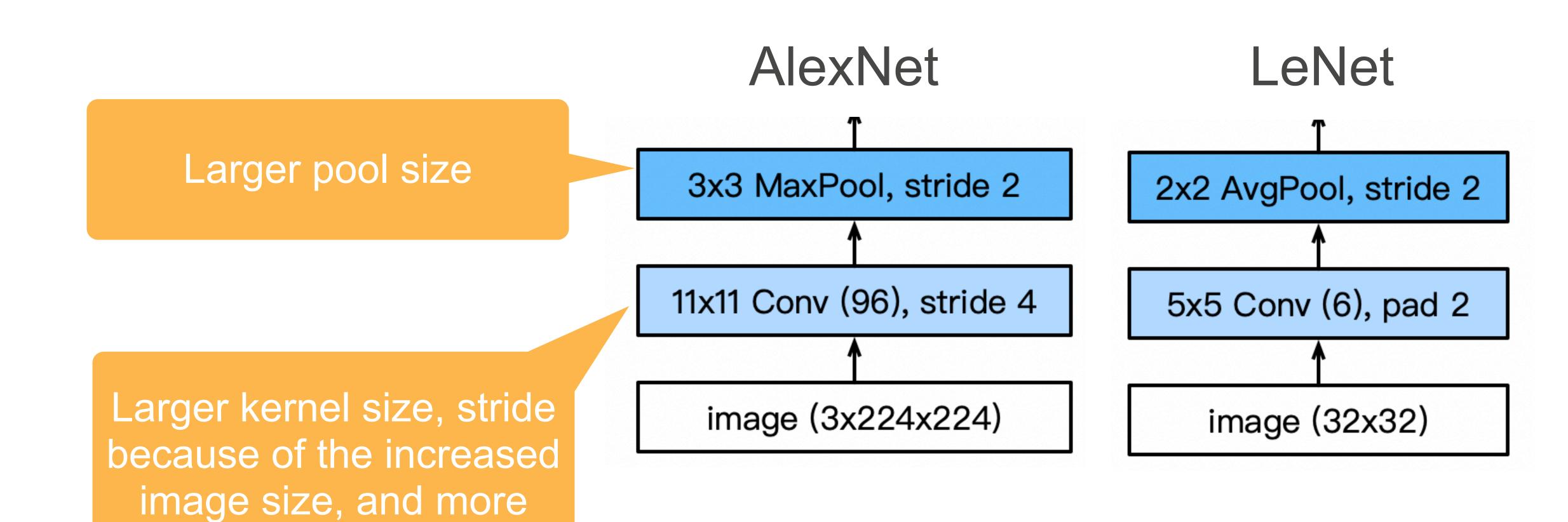
Deng et al. 2009

AlexNet

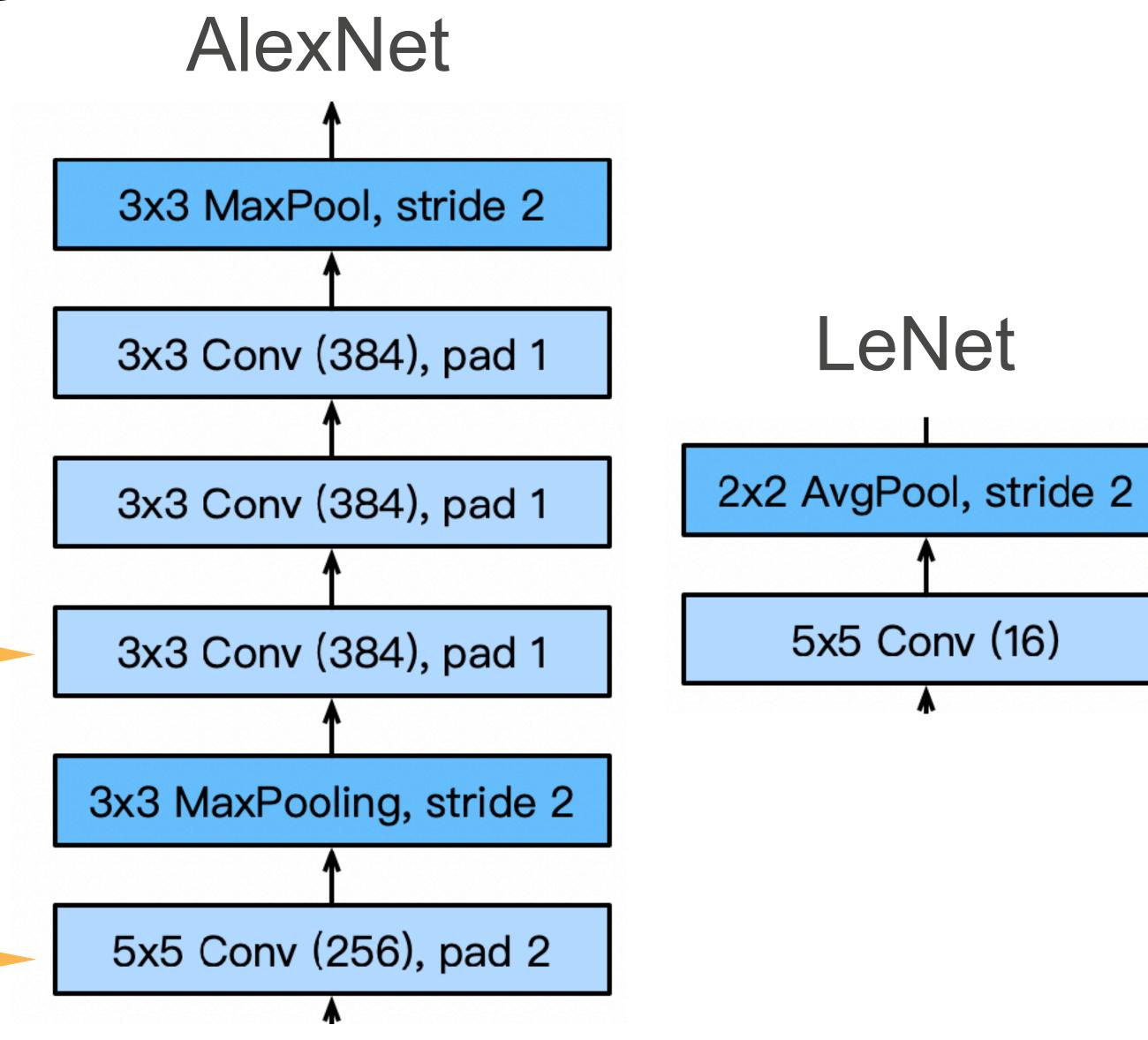
- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

AlexNet Architecture

output channels.



AlexNet Architecture

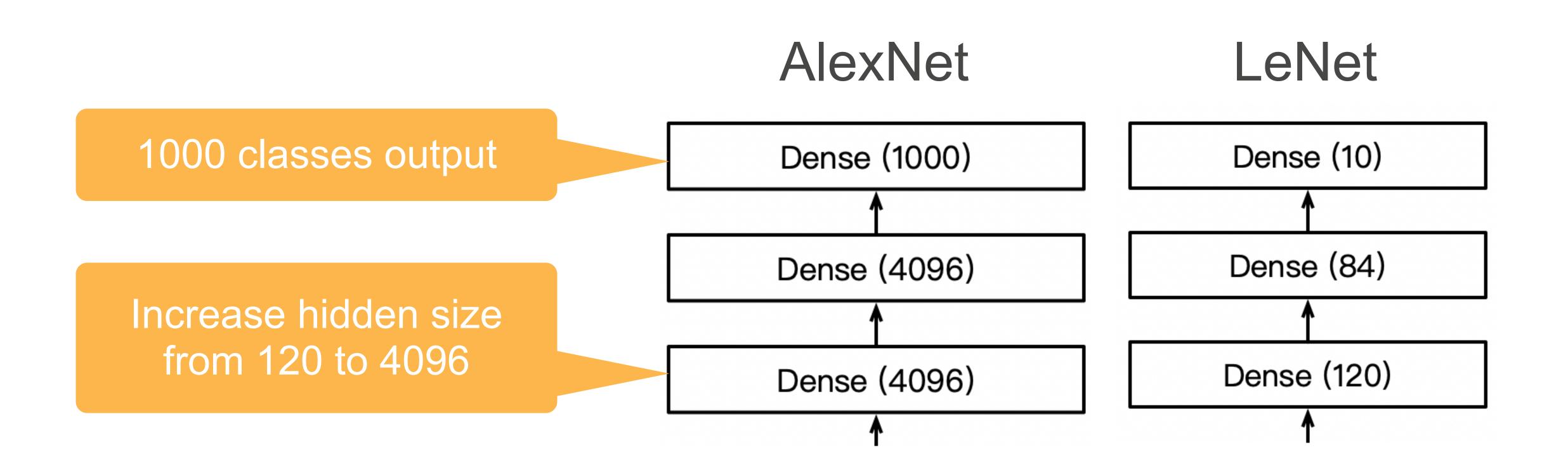


More output channels.

3 additional

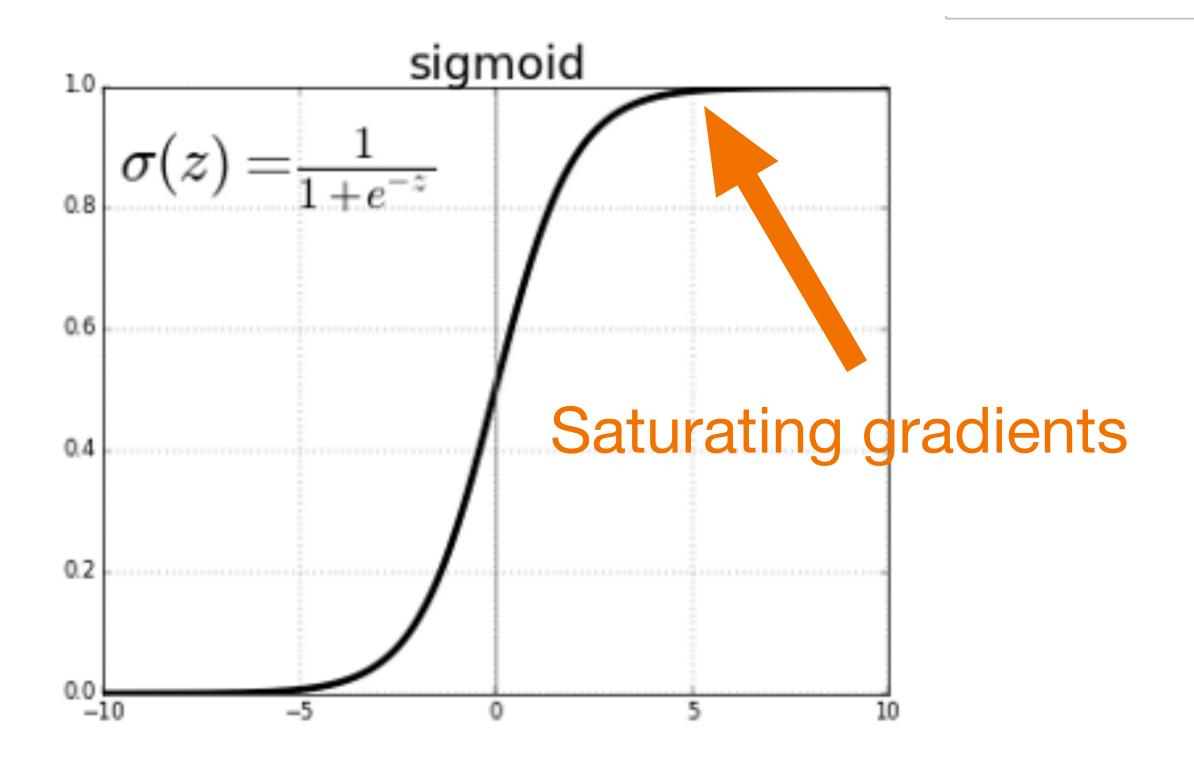
convolutional layers

AlexNet Architecture



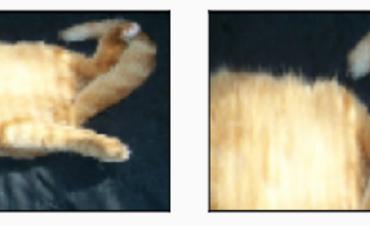
More Differences...

 Change activation function from sigmoid to ReLu (no more vanishing gradient)



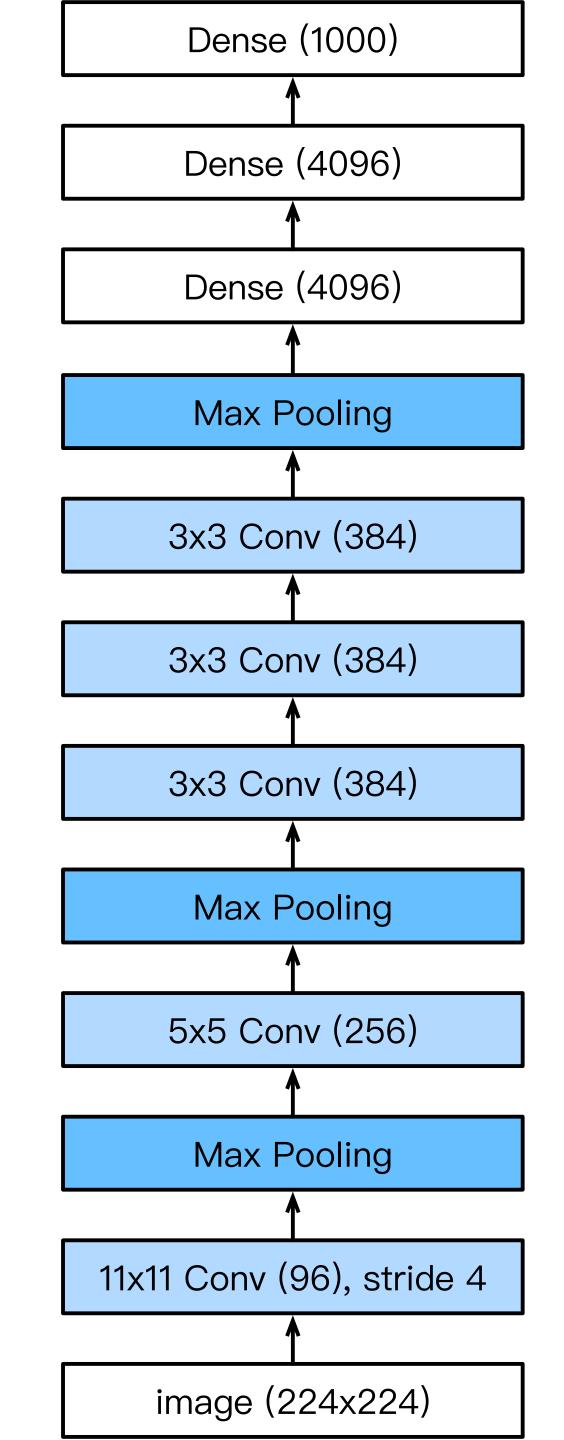
More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation



Complexity

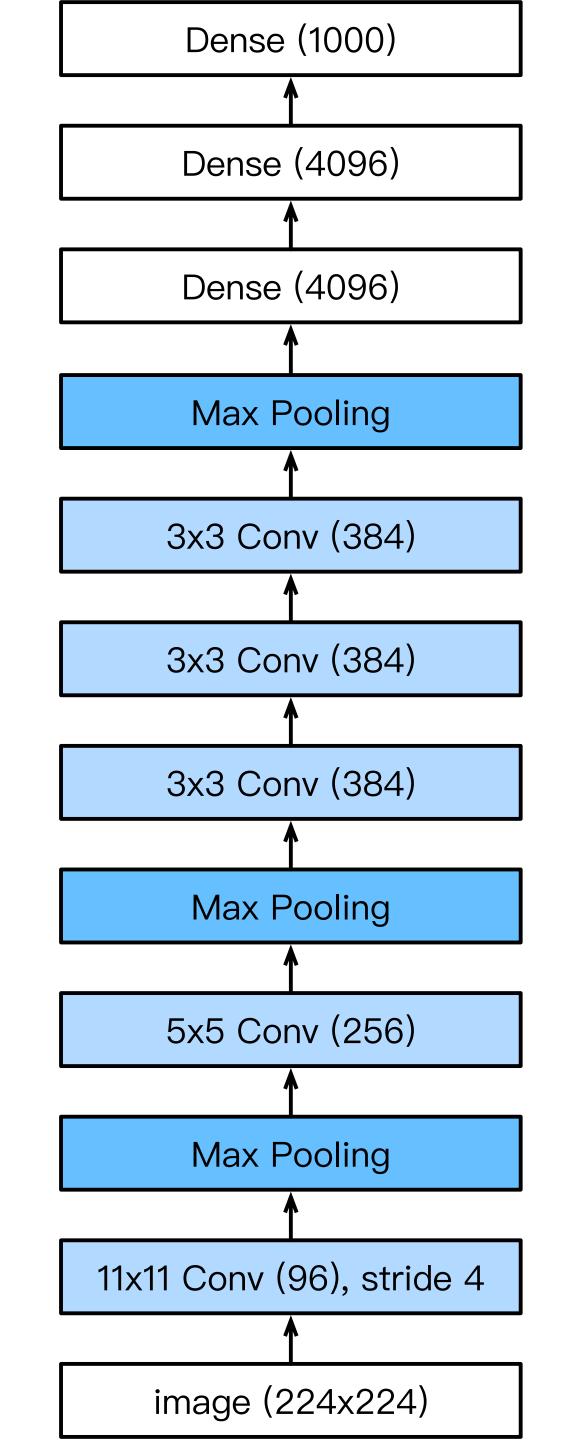
	#parameters		
	AlexNet	LeNet	
Conv1	35K	150	
Conv2	614K	2.4K	
Conv3-5	3M		
Dense1	26M	0.048M	
Dense2	16M	0.01M	
Total	46M	0.06M	
Increase	11x	1x	

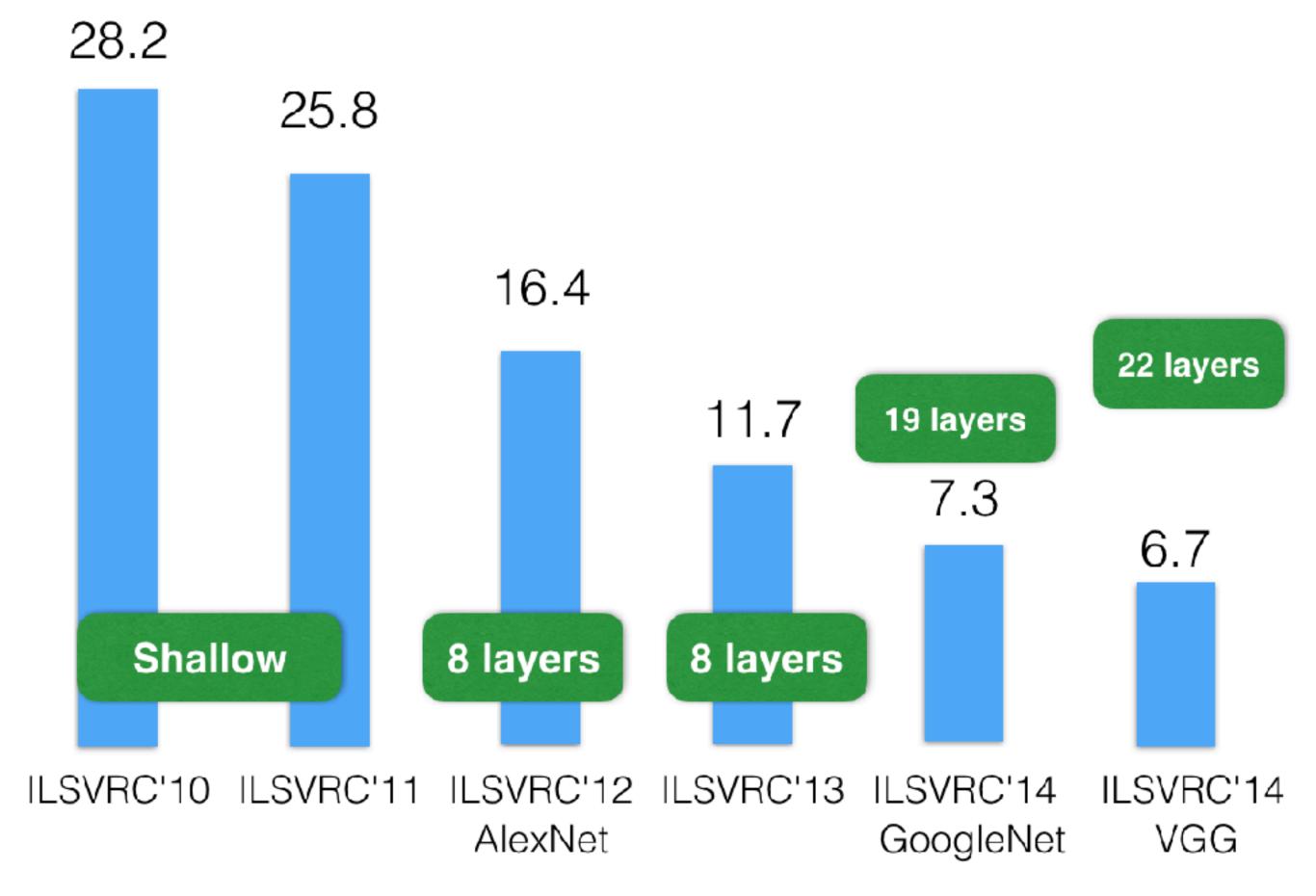


Complexity

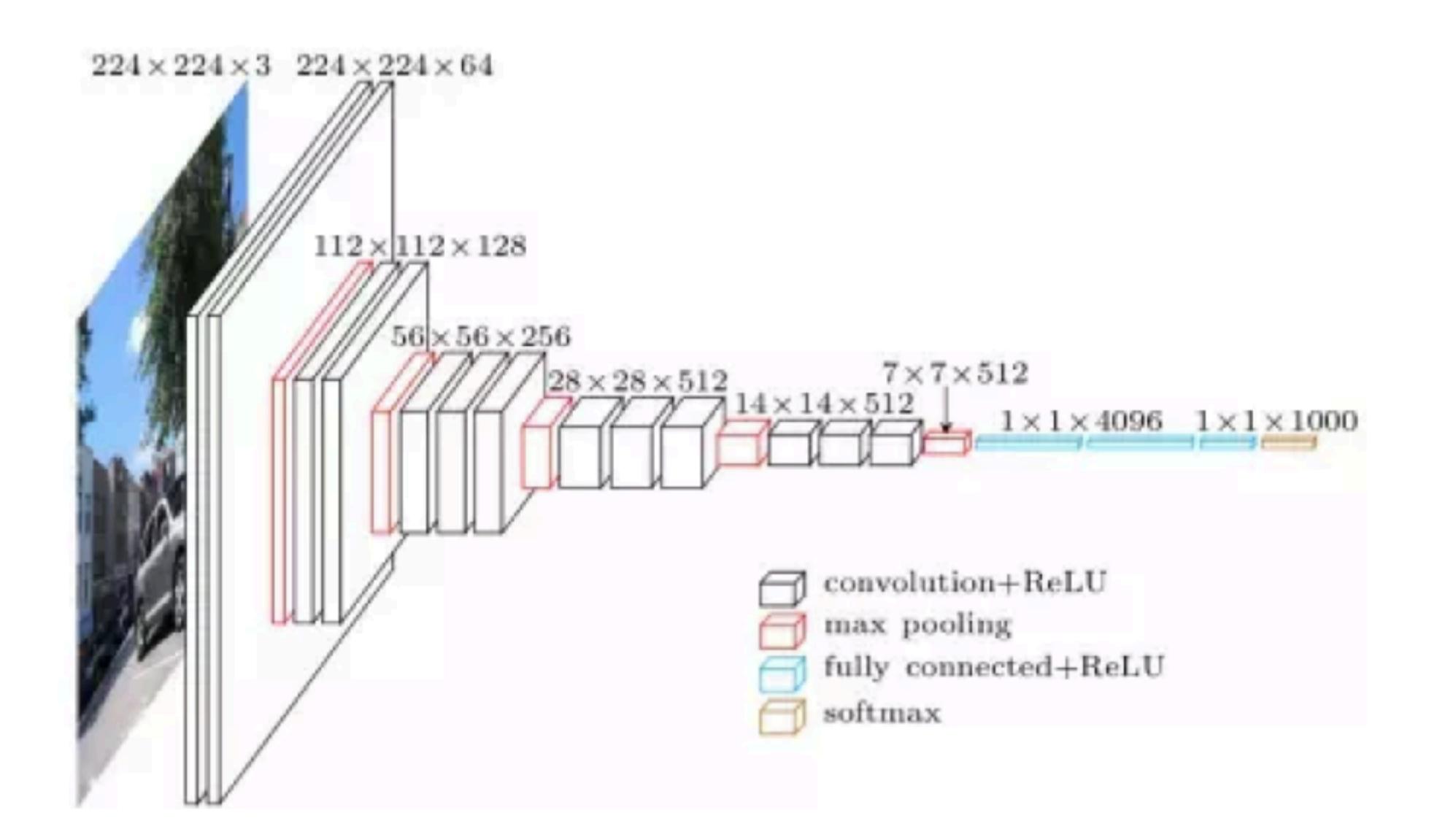
	#parameters		
	AlexNet	LeNet	
Conv1	35K	150	
Conv2	614K	2.4K	
Conv3-5	3M		
Dense1	26M	0.048M	
Dense2	16M	0.01M	
Total	46M	0.06M	
Increase	11x	1x	

11x11x3x96=35k





ImageNet Top-5 Classification Accuracy (%)



VGG

Progress

- LeNet (1995)
 - 2 convolution + pooling layers
 - 2 hidden dense layers
- AlexNet
 - Bigger and deeper LeNet
 - ReLu, preprocessing
- VGG
 - Bigger and deeper AlexNet (repeated VGG blocks)

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks
 - LeNet (first conv nets)
 - AlexNet
- PyTorch demo

Acknowledgement:

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex Smola and Mu Li:

https://courses.d2l.ai/berkeley-stat-157/index.html