

CS 540 Introduction to Artificial Intelligence Machine Learning Overview

Sharon Yixuan Li University of Wisconsin-Madison

Feb 16, 2021

Announcement

HW release dates are now available on our website

HW4 (clustering)	Tuesday Feb 23
HW5 (regression)	Tuesday March 2
HW6 (neural networks)	Tuesday March 9
HW7 (deep learning)	Tuesday March 23
HW8 (game)	Tuesday April 6
HW9 (search)	Tuesday April 13
HW10 (RL)	Tuesday April 20

HW3 review on Thursday

Today's outline

- What is machine learning?
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering

Part I: What is machine learning?

MACHINES FOLLOW INSTRUCTIONS
GIVEN BY HUMANS

What is machine learning?

• Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

Without Machine Learning

With Machine Learning

What is machine learning?

- Arthur Samuel (1959): Machine learning is the field of study that gives the computer the ability to learn without being explicitly programmed.
- Tom Mitchell (1997): A computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P**, if its performance at tasks in T as measured by P, improves with experience E.

Supervised Learning

Taxonomy of ML

Unsupervised Learning

Reinforcement Learning

Part II: Supervised Learning

- DisLike
- Like

- DisLike
- Like

- DisLike
- Like

- DisLike
- Like

Example 2: Classify Images

http://www.image-net.org/

Example 2: Classify Images

indoor

outdoor

Example 2: Classify Images

Training data

Training data

Label: outdoor

Label: indoor

testing

performance

learning (i.e.,training)

How to represent data?

input data

$$\mathbf{x} \in \mathbb{R}^d$$

d: feature dimension

$$\mathbf{x} = \left[egin{array}{c} x_1 \ x_2 \ \end{array}
ight]$$
 Tempo Intensity

There can be many features!

How to represent data?

Represent various types of data

- Image
 - Pixel values

- Bank account
 - Credit rating, balance, # deposits in last day, week, month, year, #withdrawals

Two Types of Supervised Learning Algorithms

Classification

Regression

Example of regression: housing price prediction

Given: a dataset that contains n samples

Example of regression: housing price prediction

Task: if a residence has x squares feet, predict the price?

$$y \in \mathbb{R}$$

Example of regression: housing price prediction

(credit: stanford CS229)

Supervised Learning: More examples

 \mathbf{x} = raw pixels of the image y = bounding boxes

Two Types of Supervised Learning Algorithms

Classification

• the label is a **discrete** variable

$$y \in \{1,2,3,...,K\}$$

Regression

• the label is a continuous variable

$$y \in \mathbb{R}$$

Training Data for Supervised Learning

Training data is a collection of input instances to the learning algorithm:

$$(\mathbf{x}_1, \mathbf{y}_2), (\mathbf{x}_2, \mathbf{y}_2), \dots, (\mathbf{x}_n, \mathbf{y}_n)$$
 input label

A training data is the "experience" given to a learning algorithm

Goal of Supervised Learning

Given training data

$$(\mathbf{x}_1, y_2), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

Learn a function mapping $f: X \to Y$, such that $f(\mathbf{x})$ predicts the label y on **future** data \mathbf{x} (not in training data)

Goal of Supervised Learning

Training set error

0-1 loss for classification
$$\mathcal{E} = \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) \neq y_i)$$

• Squared loss for regression:
$$\mathcal{E} = \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_i) - y_i)^2$$

A learning algorithm optimizes the training objective

$$f^* = \arg\min \mathbb{E}_{(x,y)} \ell(f(x), y)$$

Details in upcoming lectures:)

Evaluate Machine Learning Model

Use test data (separate from training data)

Part III: Unsupervised Learning

Unsupervised Learning

- Given: dataset contains no label X_1, X_2, \ldots, X_n
- Goal: discover interesting patterns and structures in the data

Unsupervised Learning

- Given: dataset contains no label X_1, X_2, \ldots, X_n
- Goal: discover interesting patterns and structures in the data

Unsupervised Learning

- Given: dataset contains no label X_1, X_2, \ldots, X_n
- Goal: discover interesting patterns and structures in the data

Clustering

- Given: dataset contains no label X_1, X_2, \ldots, X_n
- Output: divides the data into clusters such that there are intra-cluster similarity and inter-cluster dissimilarity

Clustering

Clustering Irises using three different features

The colors represent clusters identified by the algorithm, not y's provided as input

Clustering

- You probably have >1000 digital photos stored on your phone
- After this class you will be able to organize them better (based on visual similarity)

Clustering Genes

Individuals

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modification. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Clustering Words with Similar Meanings

How do we perform clustering?

- Many clustering algorithms. We will look at the two most frequently used ones:
 - *K-means clustering*: we specify the desired number of clusters, and use an iterative algorithm to find them
 - Hierarchical clustering: we build a binary tree over the dataset

Very popular clustering method

Don't confuse it with k-NN classifier

• Input: a dataset $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, and assume the number of clusters \mathbf{k} is given

Step 1: **Randomly** picking 2 positions as initial cluster centers (not necessarily a data point)

Step 2: for each point x, determine its cluster: find the closest center in Euclidean space

Step 3: update all cluster centers as the centroids

Repeat step 2 & 3 until convergence

K-means clustering: A demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Hierarchical Clustering (more to follow next lecture)

Today's recap

- What is machine learning?
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering (Kmeans and hierarchical clustering)

Thanks!