

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes

Sharon Yixuan Li University of Wisconsin-Madison

March 2, 2021

Announcement

📃 note @458 💿 🚖 🔓 🗸

Midterm information

We are about 2.5 weeks away now; below you'll find useful information. We'll answer more questions on the format as we get closer.

The format of the midterm will include a mix of questions. There will be conceptual questions which have multiple choice or short sentence answers, but also computational questions where you'll be asked to perform a simple version of an algorithm, or related components, where you will show your work. The questions will vary from easy to hard.

Topics we'll cover include (but not strictly limited to)

- Probability: joint & conditional prob., inference, means and variances
- PCA: use and implementation
- NLP: language models, n-grams, evaluation
- General setup for ML: Supervised vs unsupervised, classification vs regression, loss functions, train vs test, overfitting
- Unsupervised learning: clustering (k-means & hierarchical), histograms, density estimation
- Linear models & linear regression
- kNN, naive Bayes, ML vs MAP, neural networks (in upcoming lectures)

Anything you did on the homeworks is fair game as well.

To help get you used to the types of questions being asked, we'll release a set of sample questions one week before (i.e., Weds. March 10th). #pin

announcements

https://piazza.com/class/kk1k70vbawp3ts?cid=458

Actions 1

Announcement

Homework: HW4 review on Thursday / HW5 release today

Class roadmap

	Tuesday, Feb 16	Machine Learni
	Thursday, Feb 18	Machine Learni
	Tuesday, Feb 23	Machine Learnii
	Thursday, Feb 25	Machine Learnii
	Tuesday, March 2	Machine Learnii

ing: Introduction

ing: Unsupervised Learning I

ing: Unsupervised Learning II

ing: Linear regression

ing: K - Nearest Neighbors & Naive Bayes

We will continue on supervised learning today

Today's outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes



Part I: K-nearest neighbors

WikipediA The Free Encyclopedia

Main page

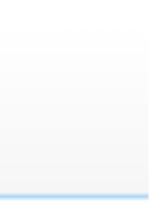
Article

k-nearest neighbors algorithm

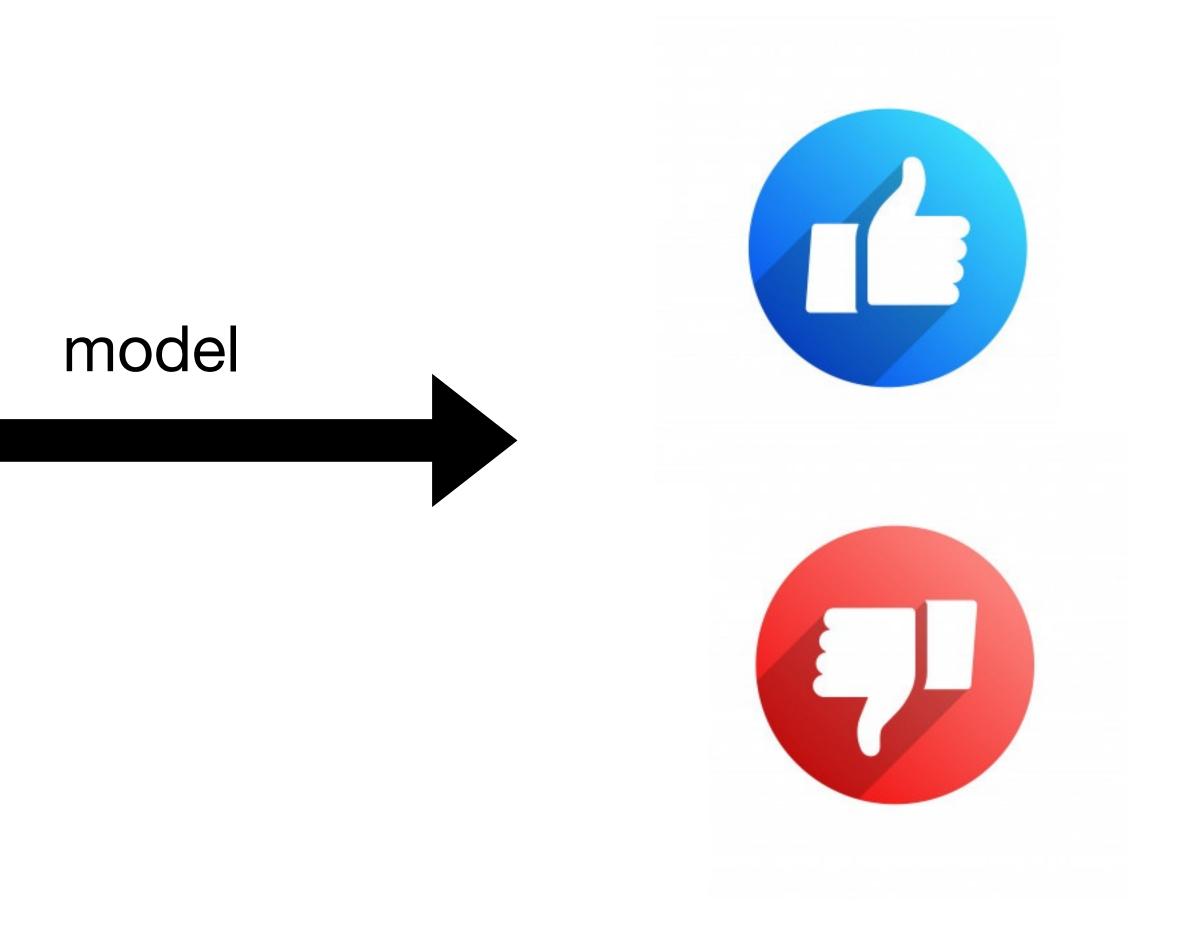
From Wikipedia, the free encyclopedia

Not to be confused with k-means clustering.

(source: wiki)



Example 1: Predict whether a user likes a song or not



Example 1: Predict whether a user likes a song or not

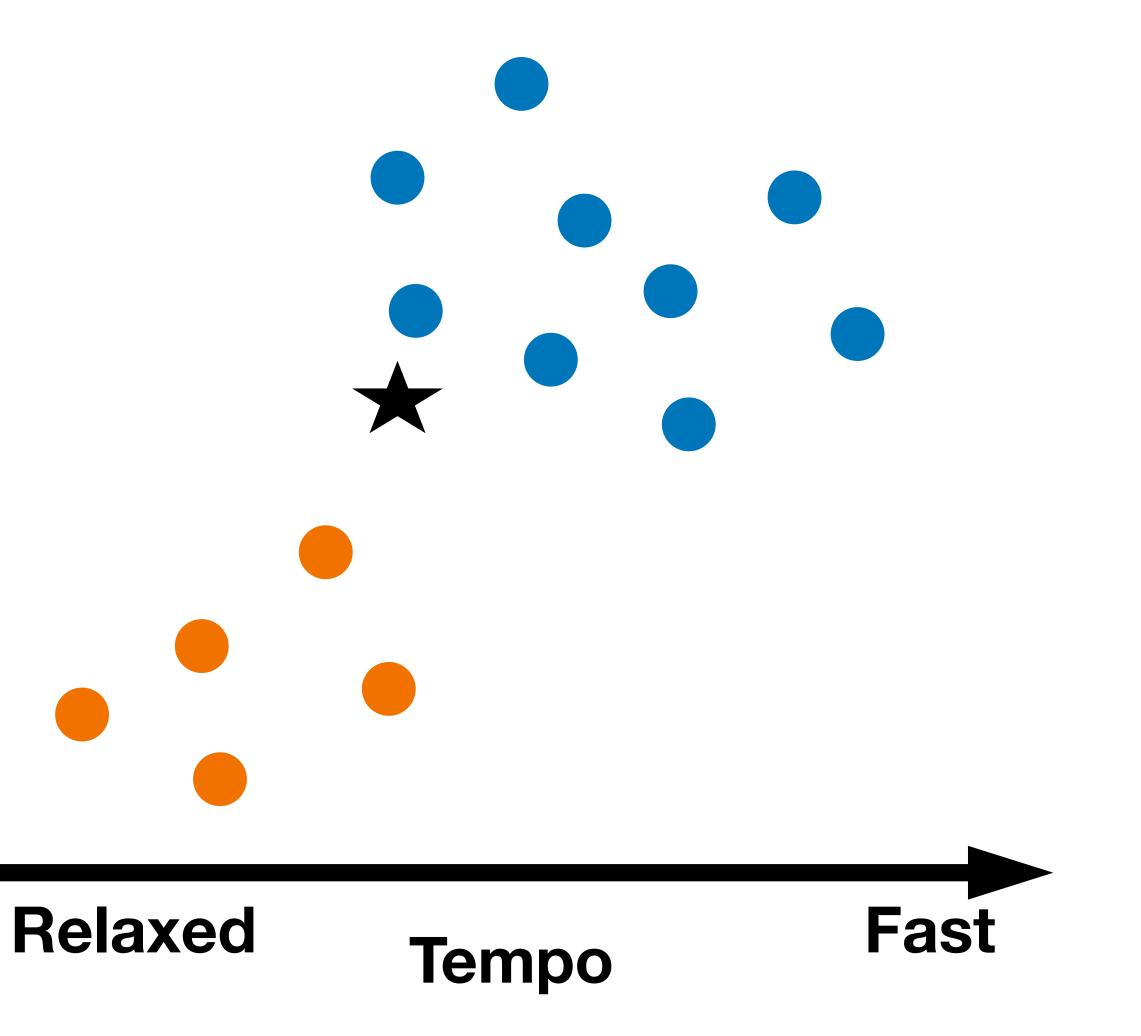


User Sharon

Tempo

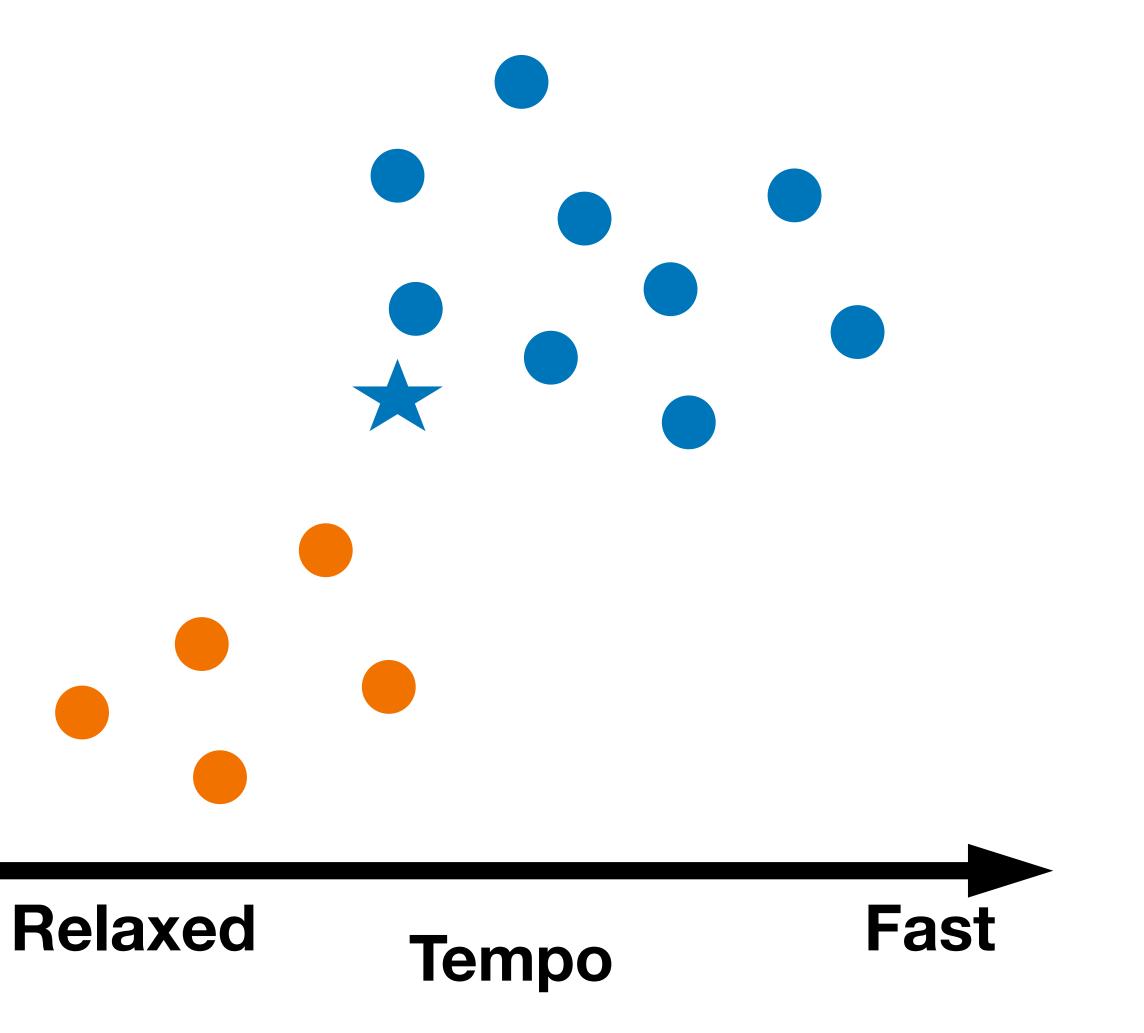
Example 1: Predict whether a user likes a song or not **1-NN**

User Sharon



Example 1: Predict whether a user likes a song or not **1-NN**

User Sharon



K-nearest neighbors for classification

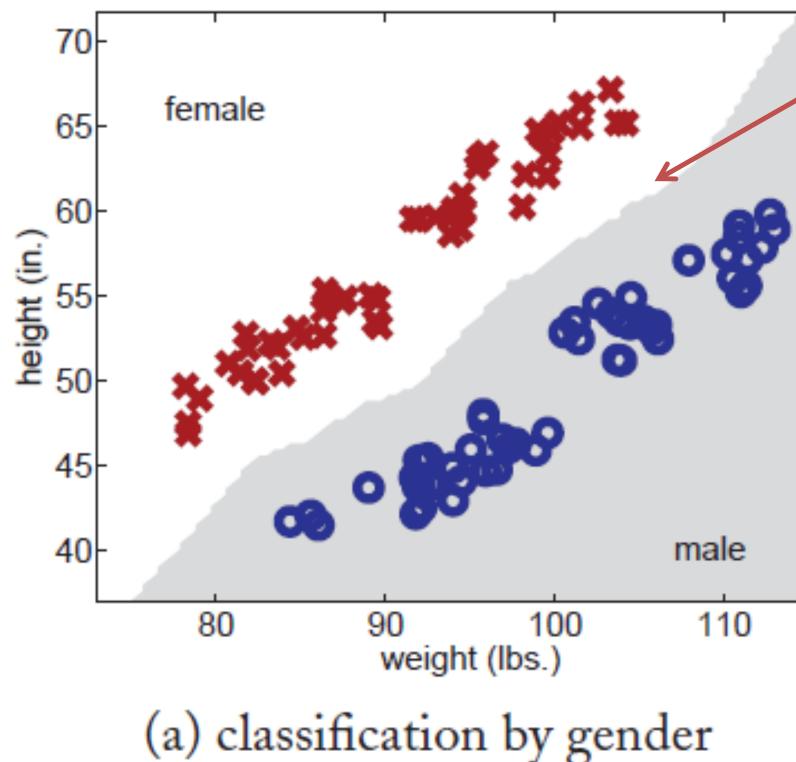
- Input: Training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), (\mathbf{x}_2, y_$

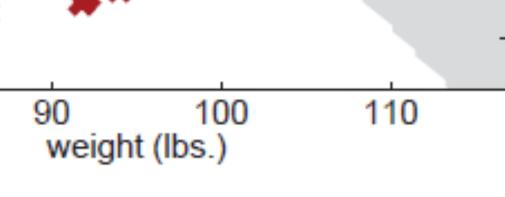
$$(x_2, y_2), \ldots, (x_n, y_n)$$

Distance function $d(\mathbf{x}_i, \mathbf{x}_i)$; number of neighbors k; test data \mathbf{x}^* 1. Find the k training instances $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under $d(\mathbf{x}_i, \mathbf{x}_j)$ 2. Output y^* as the majority class of $y_{i_1}, \ldots, y_{i_{\nu}}$. Break ties randomly.

Example 2: 1-NN for little green man

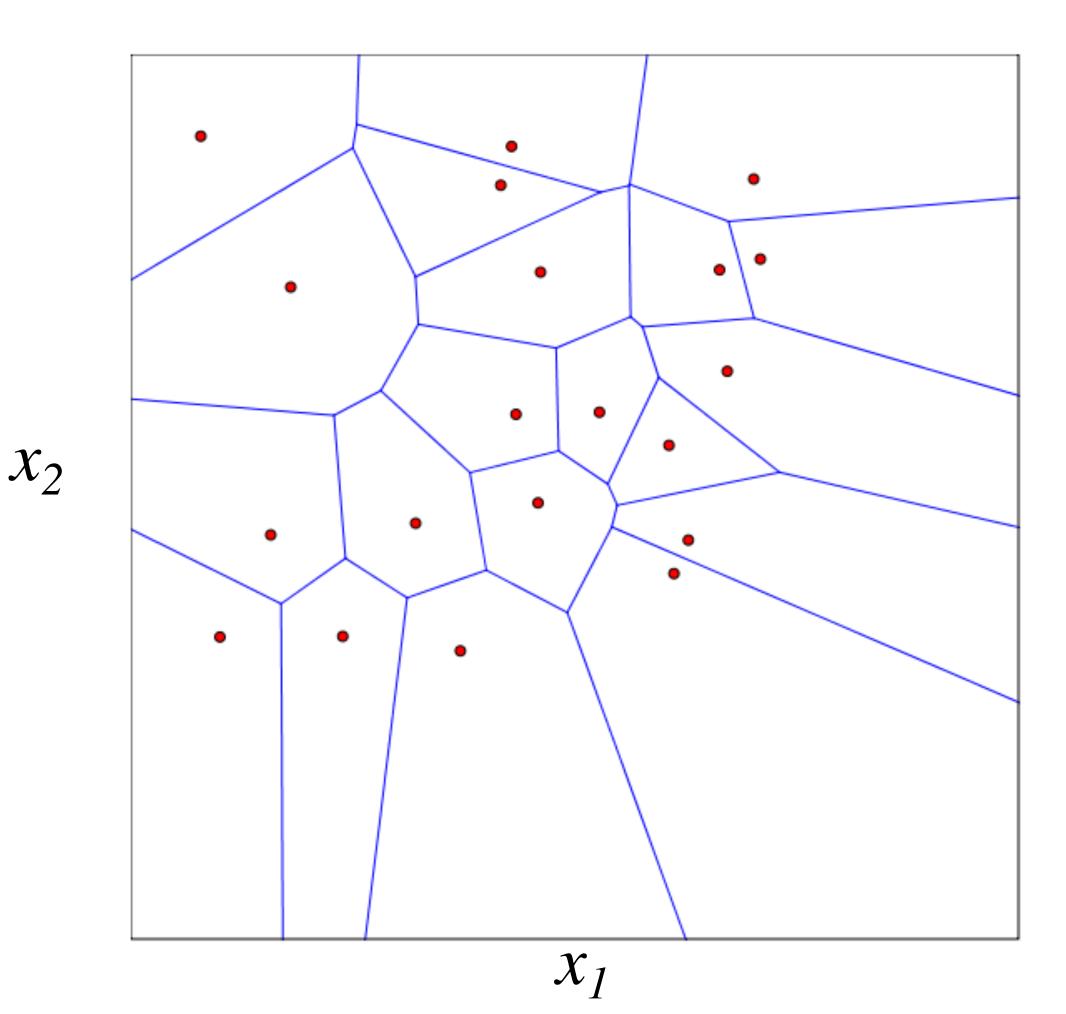
- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height **Decision boundary** 70 70 female 65 65 00 55 50 50 juvenile 60 height (in.) 22 20 adult 45 45 40 40 male 110 80 110 80 90 100 90 100 weight (lbs.) weight (lbs.) (b) classification by age





2 Shipon

The decision regions for 1-NN



Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

K-NN for regression

- What if we want regression?
- Instead of majority vote, take average of neighbors' labels
 - Given test point \mathbf{x}^* , find its k nearest neighbors $\mathbf{X}_{i_1}, \ldots, \mathbf{X}_{i_k}$ - Output the predicted label $\frac{1}{k}(y_{i_1} + \ldots + y_{i_k})$

How can we determine distance?

- suppose all features are discrete
 - Hamming distance: count the number of features for which two instances differ

How can we determine distance?

suppose all features are discrete

• Hamming distance: count the number of features for which two instances differ

suppose all features are continuous

• Euclidean distance: sum of squared differences

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

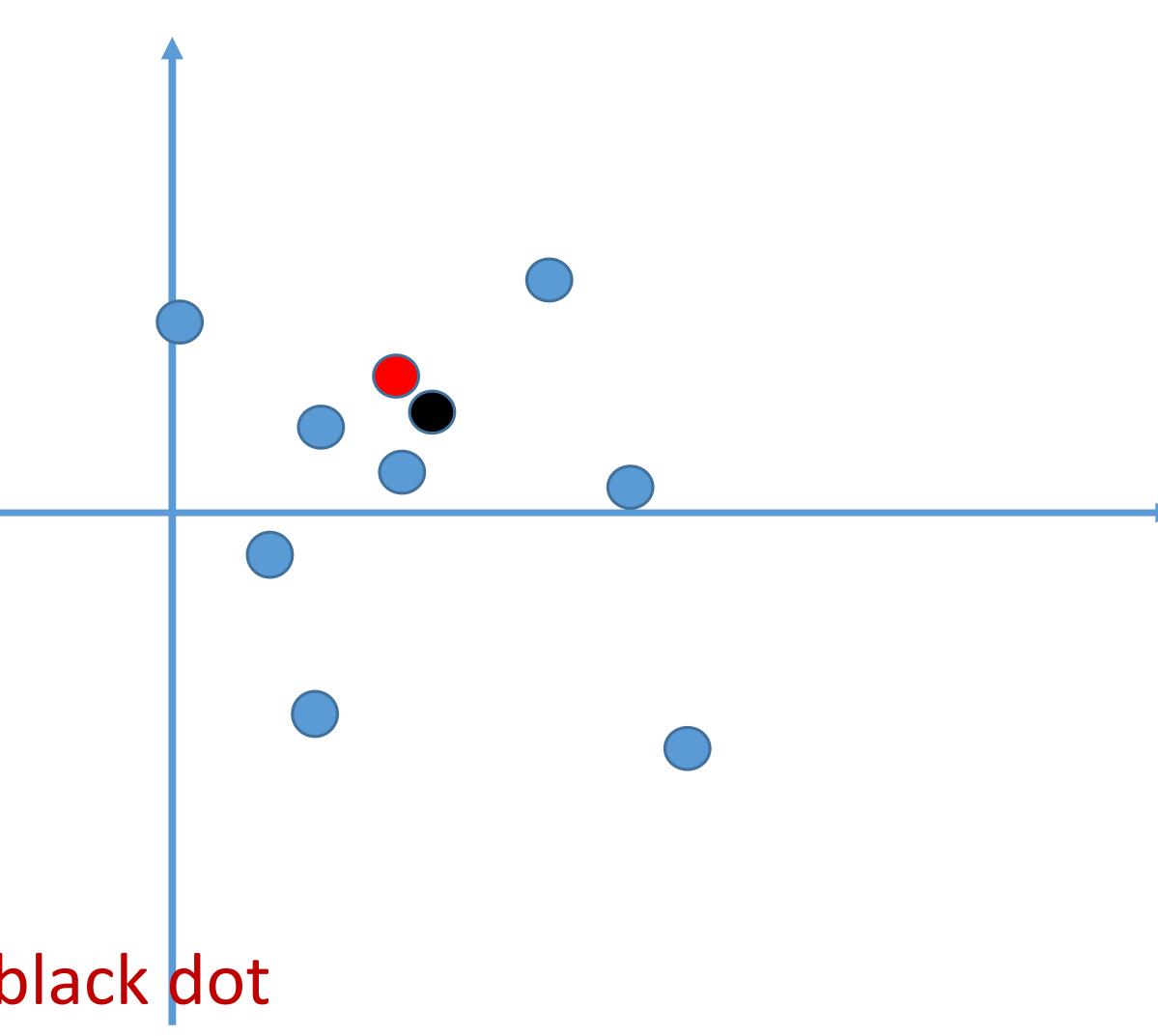
Manhattan distance:
$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{n} |p_i - q_i|$$

- Split data into training and tuning sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

How to pick the number of neighbors

Effect of k

What's the predicted label for the black dot using 1 neighbor? 3 neighbors?





Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Statistical modeling approach

Labeled training data (n examples)

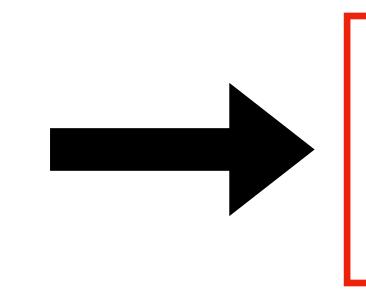
$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

Supervised Machine Learning

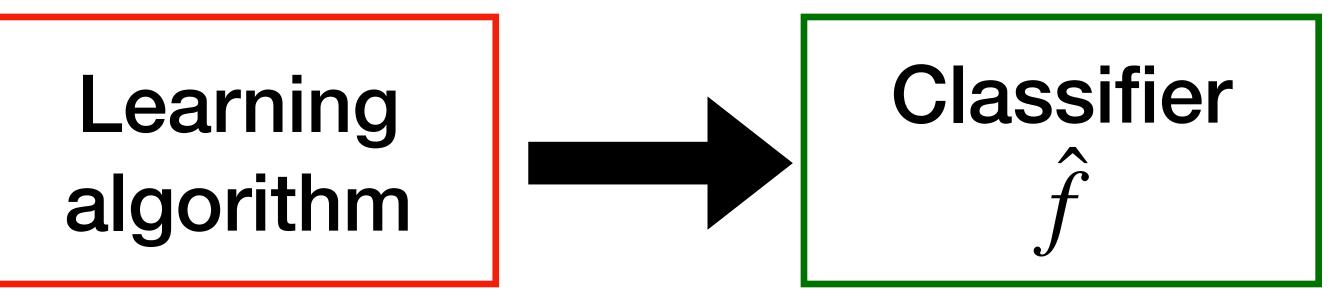
Statistical modeling approach

Labeled training data (n examples)



$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)



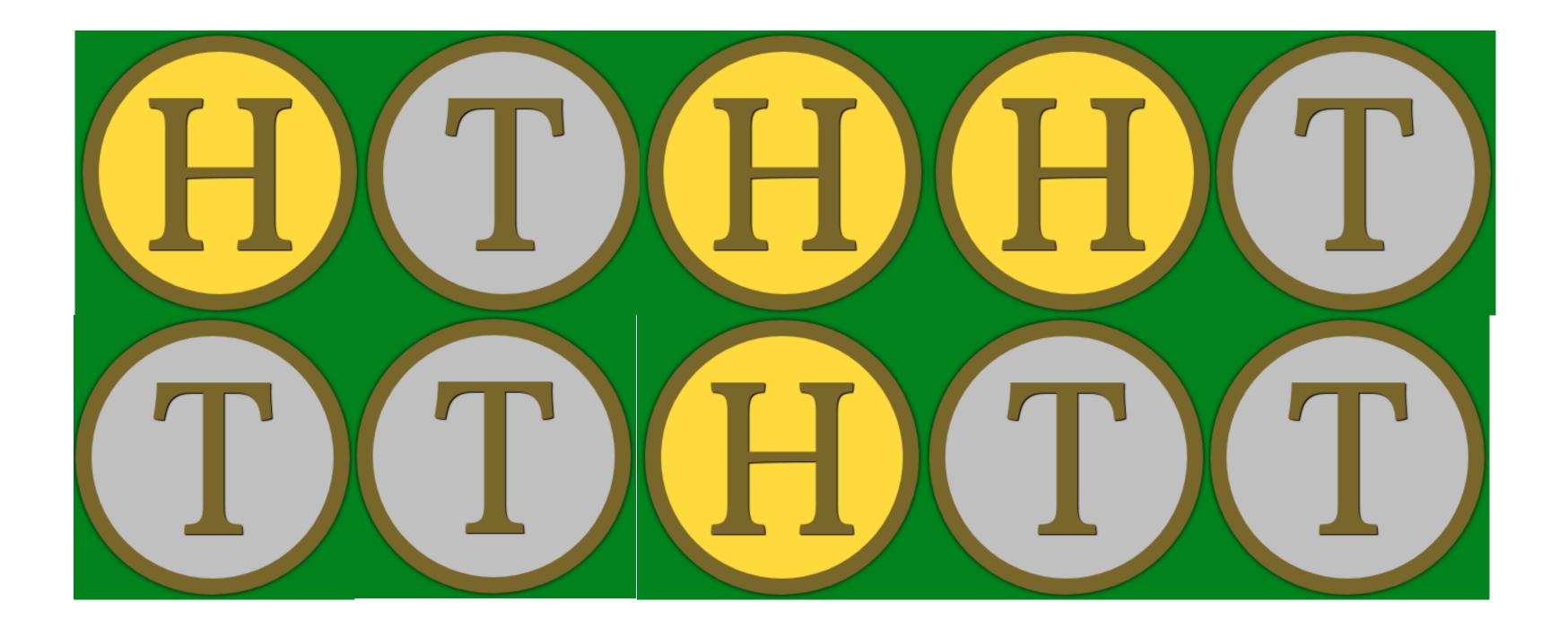
select \hat{f} from a pool of models \mathcal{F} that **minimizes** label disagreement of the training data

- Maximum likelihood (best fits the data)
- Maximum a posteriori (best fits the data but incorporates prior assumptions) • Optimization of 'loss' criterion (best discriminates the labels)

How to select $\hat{f} \in \mathscr{F}$?

Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate $\theta = p(\text{Head})$?



Intuitively, $\theta = 4/10 = 0.4$

How good is θ ?

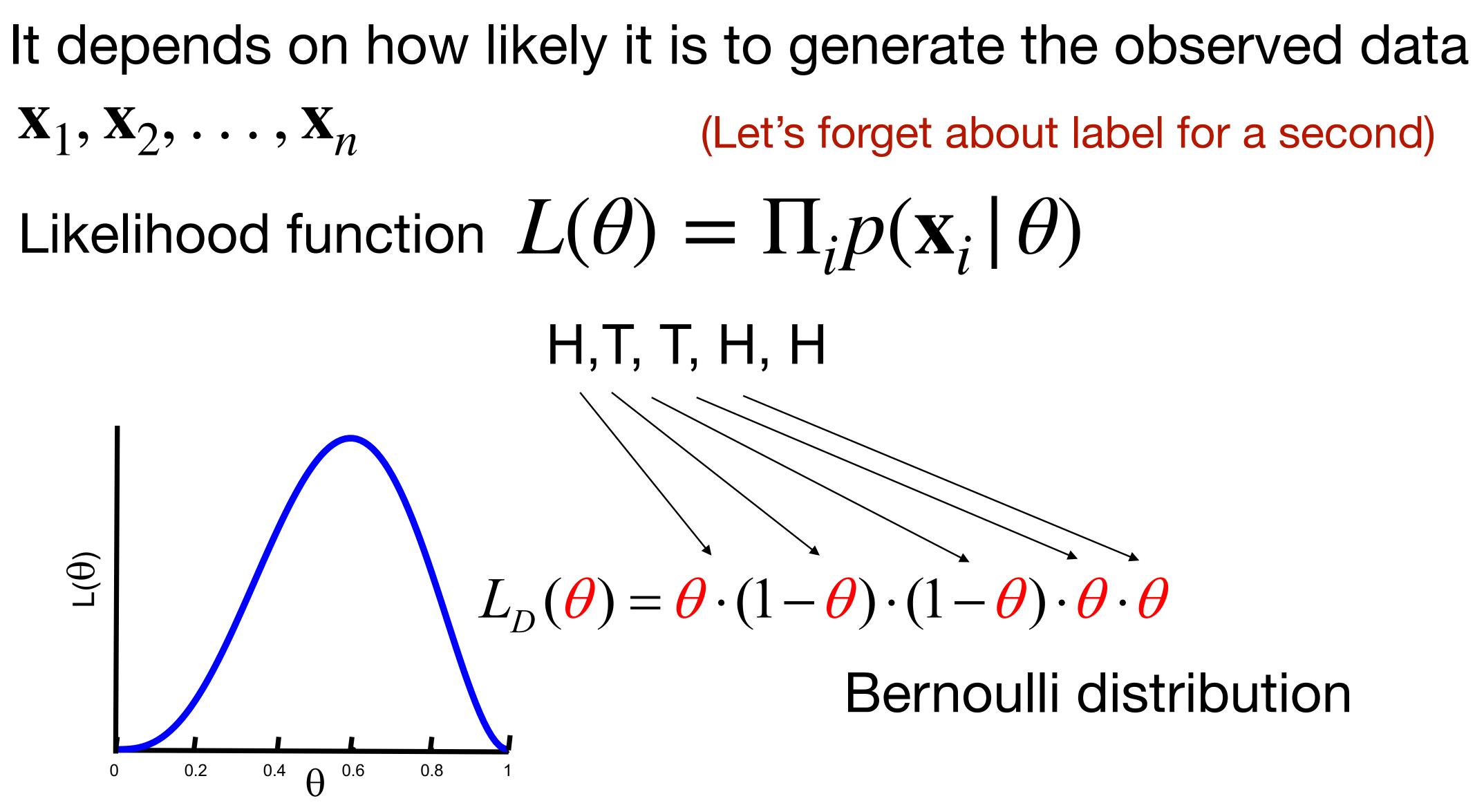
It depends on how likely it is to generate the observed data $X_1, X_2, ..., X_n$ Likelihood function $L(\theta) = \prod_i p(\mathbf{x}_i | \theta)$ Under i.i.d assumption

the probabilistic model p_{θ} ?

- (Let's forget about label for a second)

- Interpretation: How probable (or how likely) is the data given

How good is θ ?



- (Let's forget about label for a second)

 $= \frac{\partial}{\partial} \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$

Bernoulli distribution

Log-likelihood function

 $L_{D}(\theta) = \theta \cdot (1 - \theta) \cdot (1 - \theta) \cdot \theta \cdot \theta$ $= \theta^{N_H} \cdot (1 - \theta)^{N_T}$

Log-likelihood function

$\ell(\theta) = \log L(\theta)$ $= N_H \log \theta + N_T \log(1 - \theta)$

Maximum Likelihood Estimation (MLE)

Find optimal θ^* to maximize the likelihood function (and log-likelihood)

 $\theta^* = \arg \max N_H \log$

 $\frac{\partial l(\theta)}{\partial \theta} = \frac{N_H}{\theta} - \frac{N_T}{1 - \theta} =$

which confirms your intuition!

$$\theta + N_T \log(1 - \theta)$$

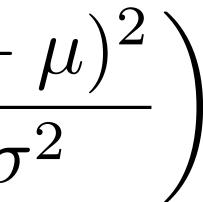
$$0 \quad \bullet \quad \theta^* = \frac{N_H}{N_T + N_H}$$

Maximum Likelihood Estimation: Gaussian Model Fitting a model to heights of females **Observed some data** (in inches): 60, 62, 53, 58,... $\in \mathbb{R}$ $\{x_1, x_2, \ldots, x_n\}$

Model class: Gaussian model

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-x)}{2\sigma^2}\right)$$

So, what's the MLE for the given data?



Estimating the parameters in a Gaussian

Mean

• Variance

courses.d2l.ai/berkeley-stat-157

 $\mu = \mathbf{E}[x] \text{ hence } \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$

 $\sigma^2 = \mathbf{E} \left[(x - \mu)^2 \right]$ hence $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$

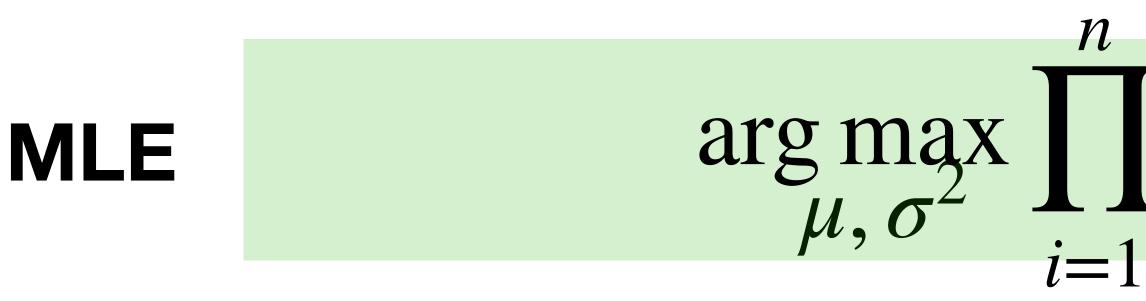
Maximum Likelihood Estimation: Gaussian Model

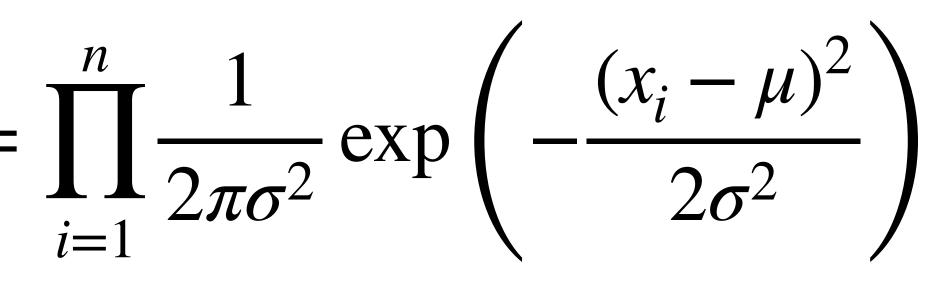
Observe some data (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) =$$

Fitting parameters is maximizing likelihood w.r.t μ, σ^2 (maximize likelihood that data was generated by model)





$$p(x_i; \mu, \sigma^2)$$

Maximum Likelihood

Decompose likelihood

$$\sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - \mu)^2$$

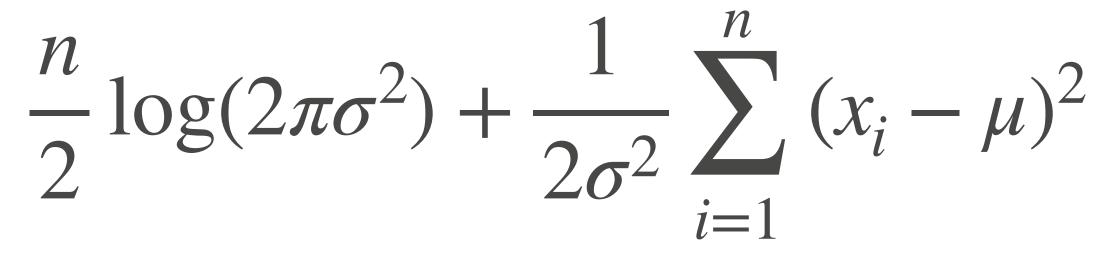
courses.d2l.ai/berkeley-stat-157

Estimate parameters by finding ones that explain the data $\underset{\mu,\sigma^2}{\operatorname{arg\,max}} \prod_{i=1}^n p(x_i;\mu,\sigma^2) = \underset{\mu,\sigma^2}{\operatorname{arg\,min}} - \log \prod_{i=1}^n p(x_i;\mu,\sigma^2)$

 $)^{2} = \frac{n}{2} \log(2\pi\sigma^{2}) + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$ Minimized for $\mu = \frac{1}{n} \sum x_i$ i=1

Maximum Likelihood

Estimating the variance

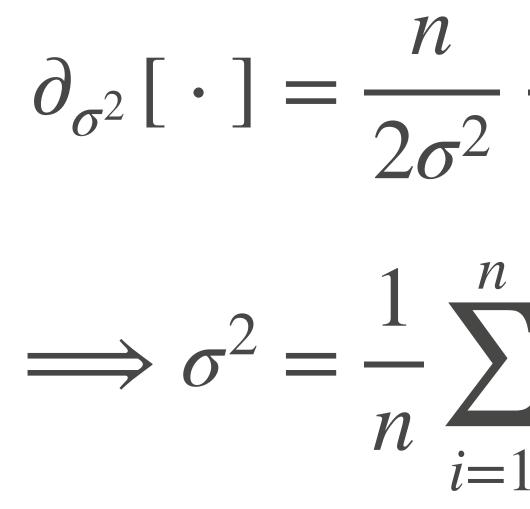


Maximum Likelihood

Estimating the variance

 $\frac{n}{2}\log(2\pi\sigma^2)$

Take derivatives with respect to it



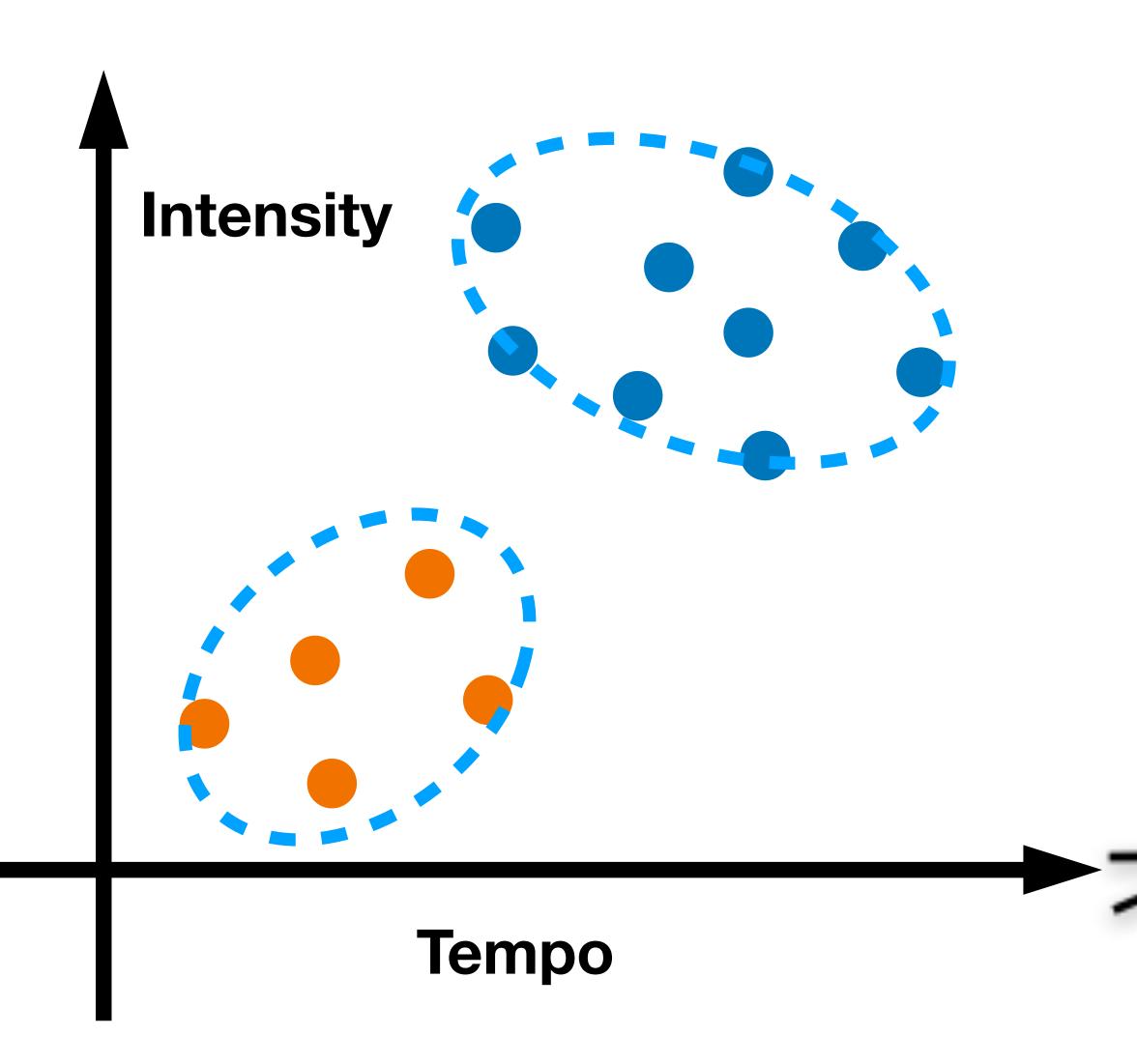
courses.d2l.ai/berkeley-stat-157

$$^{2}) + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

$$\frac{1}{2\sigma^4} - \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\sum_{i=1}^{n} (x_i - \mu)^2$$

Classification via MLE





Classification via MLE

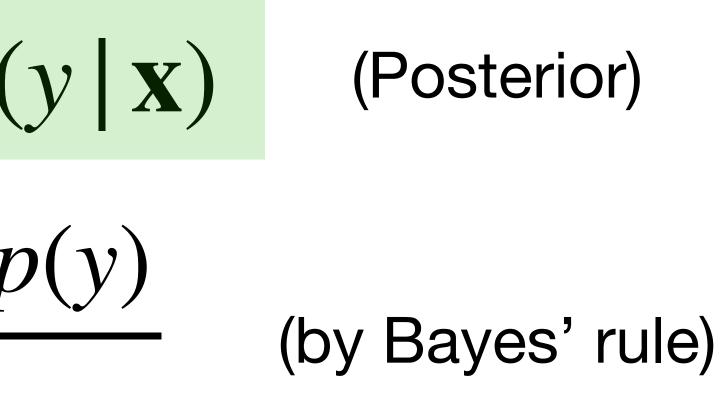
 $\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(y | \mathbf{x})$ (Prediction)

(Posterior)

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(\mathbf{x})$$
(Prediction)
$$= \arg \max \frac{p(\mathbf{x} \mid y) \cdot p}{p(\mathbf{x})}$$

$= \underset{V}{\operatorname{arg\,max}} p(\mathbf{x} | y) p(y)$



Using labelled training data, learn class priors and class conditionals

Part II: Naïve Bayes

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)



- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes |) vs. p(No |)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

p(Play |) =

p(| Play) p(Play)

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather	No			
Overcast				
Rainy	3			
Sunny	2			
Grand Total	5			

Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 1: Convert the data to a frequency table of Weather and Play

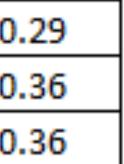
Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

	Frequency Table]	Likelihood table				
	Weather	No	Yes		Weather	No	Yes		
	Overcast		4		Overcast		4	=4/14	0
	Rainy	3	2		Rainy	3	2	=5/14	0
	Sunny	2	3		Sunny	2	3	=5/14	0
	Grand Total	5	9		All	5	9		
						=5/14	=9/14		
						0.36	0.64		

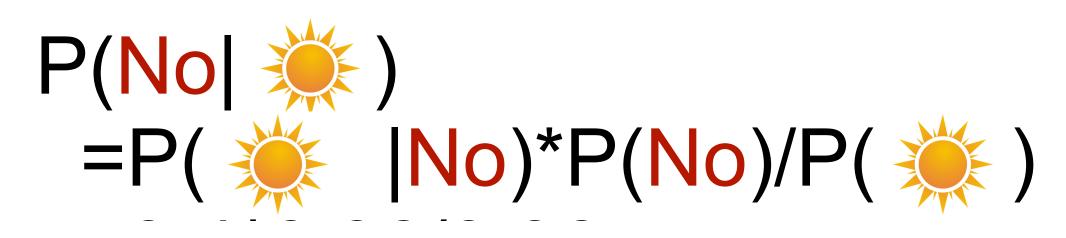
p(Play = Yes) = 0.64p(**¥es**) = 3/9 = 0.33

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes|) =P(↓ |Yes)*P(Yes)/P(↓)



Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes =P(***** |Yes)*P(Yes)/P(*****) =0.33*0.64/0.36 =0.6

P(No|) =P(| | No)*P(No)/P(| |) =0.4*0.36/0.36=0.4

Bayesian classification

$$\hat{y} = \arg \max p(y \mid \mathbf{x}) \quad (P$$
(Prediction)
$$= \arg \max \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})}$$

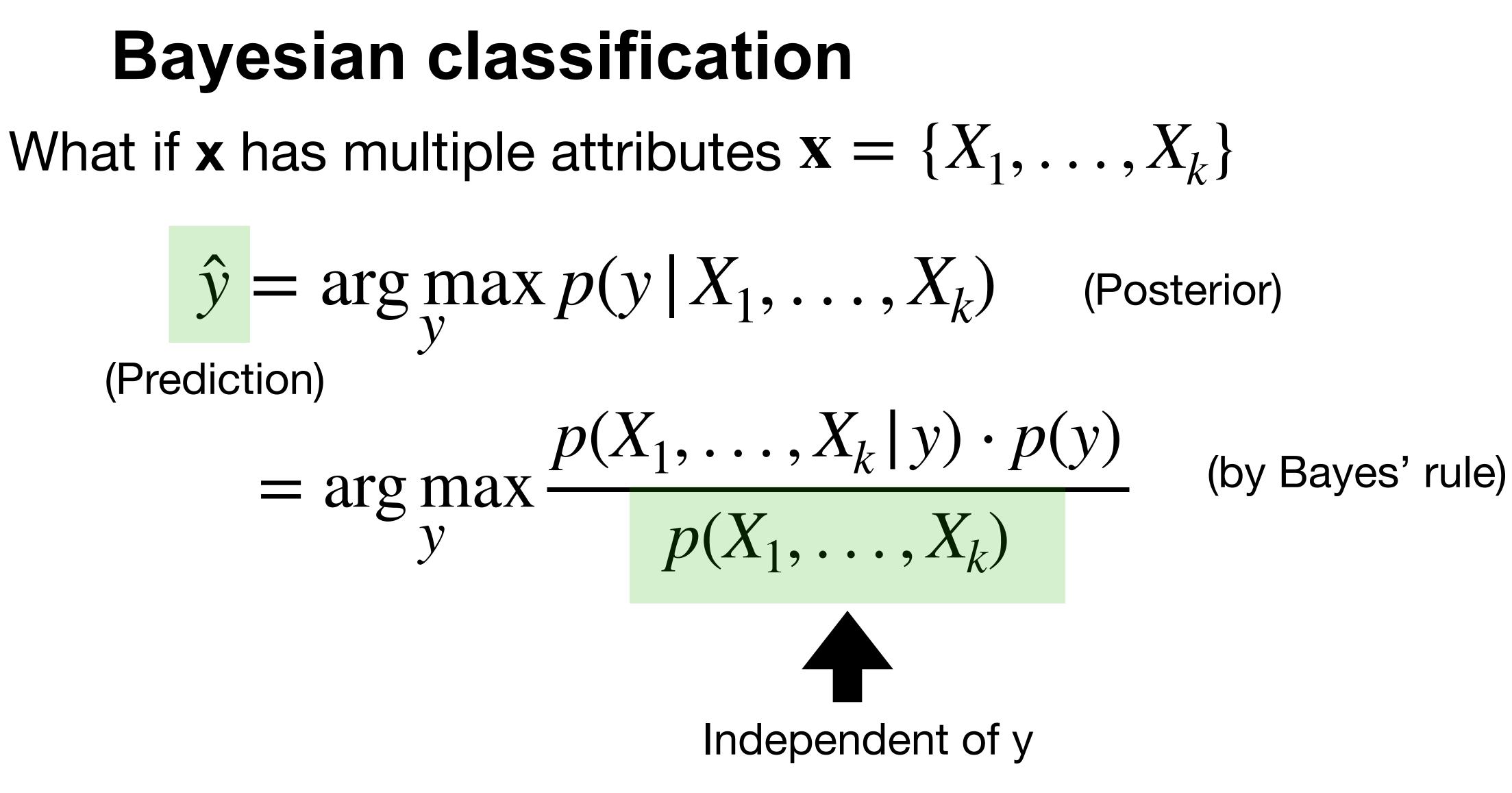
$= \arg \max p(\mathbf{x} | y)p(y)$

(Posterior)

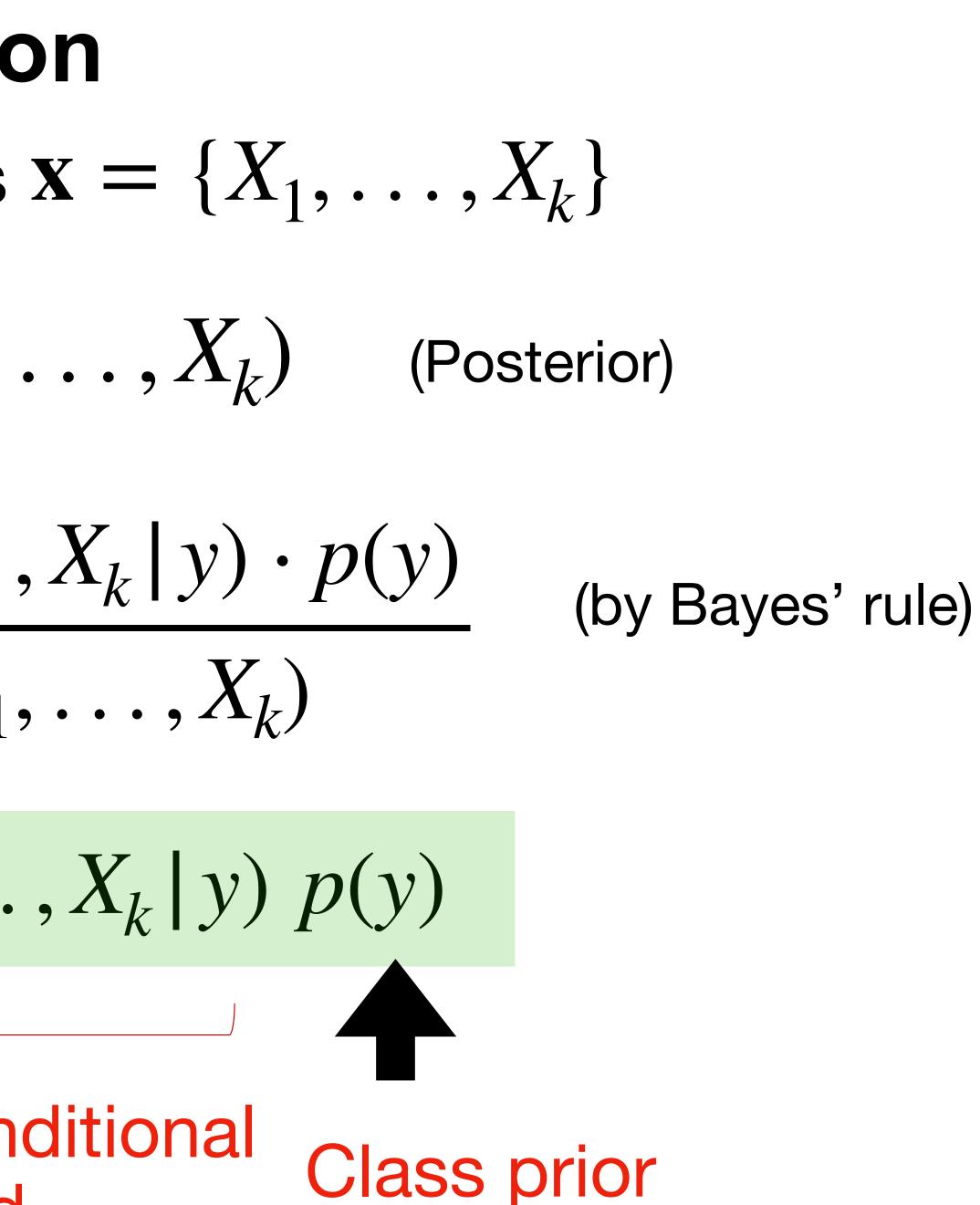
(by Bayes' rule)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$

$\hat{y} = \underset{v}{\operatorname{arg\,max}} p(y | X_1, \dots, X_k)$ (Posterior) (Prediction)



Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ $\hat{y} = \arg\max_{v} p(y | X_1, \dots, X_k) \quad \text{(Posterior)}$ (Prediction) $= \arg \max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$ $= \underset{y}{\operatorname{arg\,max}} p(X_1, \ldots, X_k | y) p(y)$ Class conditional likelihood



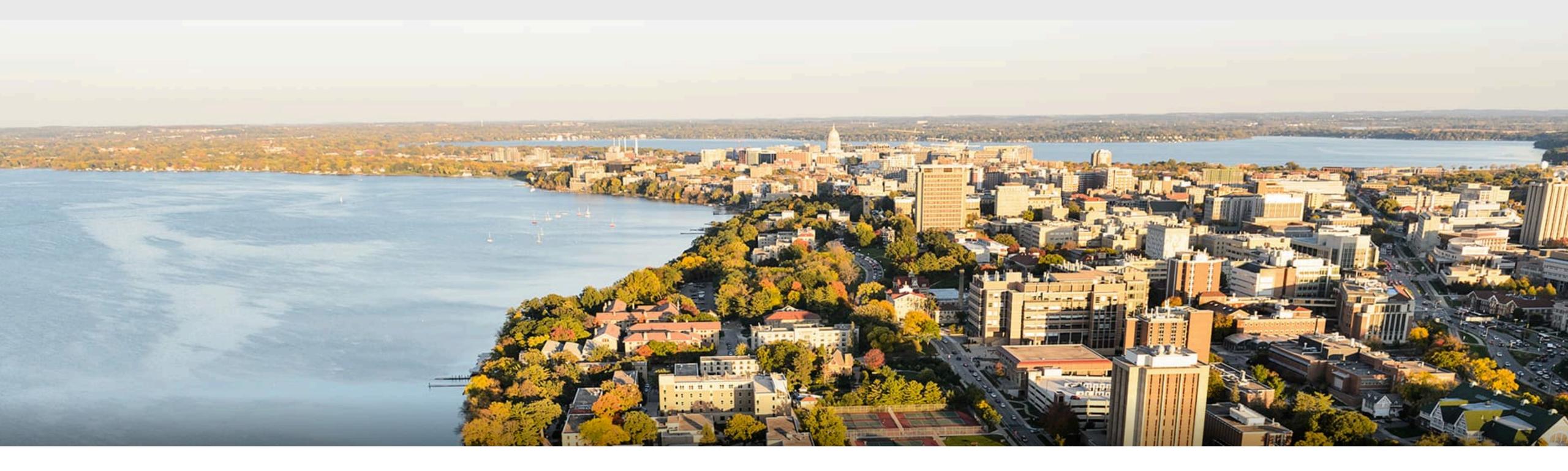
Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!)

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption



Thanks!

Based on slides from Xiaojin (Jerry) Zhu and Yingyu Liang (http://pages.cs.wisc.edu/~jerryzhu/cs540.html), and James McInerney

