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CS 540 Introduction to Artificial Intelligence
Classification - KNN and Naive Bayes
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Announcement

Actions ¥

E note @458 g
 Actions >

Midterm information

We are about 2.5 weeks away now; below you'll find useful information. We'll answer more questions on the format as we get closer.

The format of the midterm will include a mix of questions. There will be conceptual questions which have multiple choice or short sentence answers, but also computational questions where
you'll be asked to perform a simple version of an algorithm, or related components, where you will show your work. The questions will vary from easy to hard.

Topics we'll cover include (but not strictly limited to)

- Probability: joint & conditional prob., inference, means and variances

- PCA: use and implementation

- NLP: language models, n-grams, evaluation

- General setup for ML: Supervised vs unsupervised, classification vs regression, loss functions, train vs test, overfitting
- Unsupervised learning: clustering (k-means & hierarchical), histograms, density estimation

- Linear models & linear regression

- KNN, naive Bayes, ML vs MAP, neural networks (in upcoming lectures)

Anything you did on the homeworks is fair game as well.
To help get you used to the types of questions being asked, we'll release a set of sample questions one week before (i.e., Weds. March 10th).
#pin

announcements

https://piazza.com/class/kk1k70vbawp3ts?cid=458



Announcement

Homework: HW4 review on Thursday / HWS release today

Class roadmap

Tuesday, Feb 16
Thursday, Feb 18
Tuesday, Feb 23

Thursday, Feb 2!

Tuesday, March 2 Machine Learning: K - Nearest Neighbors & Naive Bayes

We will continue on supervised learning today



Today’s outline

 K-Nearest Neighbors
e Maximum likelihood estimation

 Naive Bayes
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Part |. K-nearest neighbors



Article Talk

wikirpiA | k-nearest neighbors algorithm

The Free Encycloped: '
e S1e¢ Cncyclopedia From Wikipedia, the free encyclopedia

Main page Not to be confused with k-means clustering.

A~

(source: wiki)



Example 1: Predict whether a user likes a song or not

model
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Example 1: Predict whether a user likes a song or not
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K-nearest neighbors for classification

* Input: Training data (X1 ¥1)s (X0, V)« 5 (X0 1)

d(x., XJ-); number of neighbors k; test data x*

1. Find the k training instances X; , . .., X; closest to X* under d(X;, X;)

2. Output y* as the majority class of Vi --»Y; - Break ties randomly.



Example 2: 1-NN for little green man
- Predict gender (M,F) from weight, height

- Predict age (adult, juvenile) from weight, height
Decision boundary

70F
651 female
__60r __60r Juvenile
= =
£ 5™ _ﬁ.ﬂ “
2D Ry
) )
< 50 < 50¢
adult
45} 4or
40r male : 40t *
80 90 100 110 30 90 100 110
weight (Ibs.) weight (Ibs.)

(a) classification by gender (b) classification by age



The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature
space that is in the nearest neighborhood of each training instance




K-NN for regression

 What if we want regression?

* |nstead of majority vote, take average of neighbors’ labels

- Given test point X*, find its k nearest neighbors X; , ..., X;
1

- Output the predicted label Z(yil + ...+ )’ik)



How can we determine distance?

suppose all features are discrete

* Hamming distance: count the number of features for
which two instances differ



How can we determine distance?

suppose all features are discrete

* Hamming distance: count the number of features for
which two instances differ

suppose all features are continuous
* Euclidean distance: sum of squared differences

d(p,q) = i (p; — %’)2
V&

* Manhattan c;llistance:

dp.q) = ), |p;—4q;
=1




How to pick the number of neighbors

e Split data into training and tuning sets
» (Classify tuning set with different k

* Pick k that produces least tuning-set error



Effect of k

What'’s the predicted label for the black dot
using 1 neighbor? 3 neighbors?
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Part |I: Maximum Likelihood Estimation




Supervised Machine Learning

Statistical modeling approach

Labeled training
data (n examples)

(Xla yl)a (X29 }72), ¢ o o9 (Xna yn)

drawn independently from
a fixed underlying distribution
(also called the 1.1.d. assumption)



Supervised Machine Learning

Statistical modeling approach

Labeled training q Learning Classifier
data (n examples) algorithm #

(Xla yl)a (X29 }72), ¢ o o9 (Xna yn)

select f from a pool of models F#
that minimizes label disagreement

drawn independently from .
of the training data

a fixed underlying distribution
(also called the 1.1.d. assumption)



How to select f c F?

e Maximum likelihood (best fits the data)
e Maximum a posteriori (best fits the data but incorporates prior assumptions)

e Optimization of ‘loss’ criterion (best discriminates the labels)



Maximum Likelihood Estimation: An Example

Flip a coin 10 times, how can you estimate 8 = p(Head)?

Intuitively, 6 = 4/10 = 0.4



How good is 67

It depends on how likely it is to generate the observed data
X1, X9, .00, X (Let’s forget about label for a second)

Likelihood function L(@) — Hi p(Xl- | 9)

Under I.I.d assumption

Interpretation: How probable (or how likely) is the data given
the probabilistic model p,?



How good is 67

It depends on how likely it is to generate the observed data

X1, X9, .00, X (Let’s forget about label for a second)
Likelihood function L(6) = I1.p(Xx:|0)
HT T H H

AN

L. (0)=0-(1-60)-(1-6)-0-0

Bernoulli distribution

L(O)



Log-likelihood function

L,(0)=0-(1-0)-(1-0)-0-6
=0V . (1 — O
| og-likelihood function
£ (0) = log L(6)
= Ny log @ + Nylog(1l — 6)



Maximum Likelihood Estimation (MLE)

Find optimal 6* to maximize the likelihood function (and log-likelihood)

0 = arg max Ny log @ + N, log(1 — 6)

o) _ Ny M — 0 * 9*=L
N

0 6 1-0 -+ Ny

which confirms your intuition!



Maximum Likelihood Estimation: Gaussian Model
Fitting a model to heights of females
Observed some data (in inches): 60, 62, 53, 58,... € R

X715 X5 e ooy X}

Model class: Gaussian model A

o) = e (-8

So, what’s the MLE for the given data?



Estimating the parameters in a Gaussian

* Mean |
u = E[x] hence /i = —in
"t =1
e Variance ;
2 2 A2 1 AN\2
o- =K [(x—,u) ] hence ¢ =—Z(xi—,u)
t =1

courses.d2l.ai/berkeley-stat-157



Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): X;, X5, ..., X, € R

Assume that the data is drawn from a Gaussian _/\

L(u,0%|X) = |n|p(xw 67) = |n| : eXp( (xi_ﬂ)z)
) — 7o Mo — ) o )
i 2O 20

=1

Fitting parameters is maximizing likelihood w.r.t /i, c°

(maximize likelihood that data was generated by model)

n
2
arg max XU, O
MLE gﬂ, 13 !—! p(x;; 1, 0°)



Maximum Likelihood

» Estimate parameters by finding ones that explain the data
arg Mg Hp( 4.0%) = arg min ~ 1ong< .0%)
=1

. Decompose I|keI|hood

n

1 1
—log(276?) + —(x; — 2 — D jog(2762) + — — U
izlz o(2no”) 262( 7y > o(2no”) 2022()6 1)

1
Minimized for u=— ) X,

n
=1

courses.d2l.ai/berkeley-stat-157



Maximum Likelihood

» Estimating the variance

T 002762 + — ¥ (x. — u)?
5 10g(2707) 2022( M)



Maximum Likelihood

» Estimating the variance

n

= log(2762) + _ Z (x; — p)”

2 2072 -
» [ake derivatives with respect to it
2
0| | 2—02—2—642(36—/4)

6 = —Z(xi—,u)z
& =1

courses.d2l.ai/berkeley-stat-157
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Classification via MLE

j\/ — f(x) = arg max p(y | X) (Posterior)

(Prediction)



Classification via MLE

j\/ — f(x) = arg max p(y | X) (Posterior)
(Prediction)

px1y) - p(y)
— dIg INdX ————  (by Bayes’ rule)

y p(X)

= arg ymaX px|y)p(y)

Using labelled training data, learn class priors and class conditionals
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Part |l: Nalve Bayes



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
 Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
 Observed data {Weather, play on day m}, m={1,2,...,N}



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
 Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
 Observed data {Weather, play on day m}, m={1,2,...,N}

p( | Play) p(Play)
p(=¢ )

p(Play | -¢-)

Bayes rule



Example 1: Play outside or not?

 Step 1: Convert the data to a frequency table of Weather and Play

Weather (Play

Sunny No Frequency Table
Overcast |Yes Weather NO Yes
Rainy Yes Overcast 4
sunny Yes Rainy 3 2
Sunny Yes sunny 3
Overcast |Yes Grand Total 5 9
Rainy NO

Rainy NO

sunny Yes

Rainy Yes

sunny NO

Overcast |Yes

Overcast |Yes

Rainy NO

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Example 1: Play outside or not?

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather |Play

Sunny No Frequency Table ‘ Likelihood table .l

Overcast |Yes Weather No Yes Weather No Yes

Rainy Yes Overcast 4 Overcast 4 =4/14 0.29
sunny Yes Rainy 3 2 Rainy 3 2 =5/14 0.36
Sunny  |Yes Sunny 3 Sunny 2 3 =5/14 0.36
Overcast |Yes Grand Total 5 9 All 5 9

Rainy  |No =5/14 | =9/14

Rainy NO 0.36 0.64

Sunny Yes

Rainy __|Yes p(Play = Yes) = 0.64

sunny NO

Overcast |Yes p( ‘ YeS) — 3/9 — 033

Overcast |Yes

Rainy NO

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes| ) "
=P( lYes)*P(Yes)/P( ¢¢) -

P(No| ) "
=P( @ |[No)"P(No)/P(¢r) .



Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes| )
=P( [Yes)*P(Yes)/P( )
=0.33%0.64/0.36
=0.6

P(No| )
=P( INo)*P(No)/P( )
=0.470.36/0.36
=0.4

P(Yes| =) > P(No| ‘©-) go outside and play!



Bayesian classification

j\/ — dI'g IMldX p(y | X) (Posterior)
(Prediction)
px1y) - p(y)
— dIg INdX ————  (by Bayes’ rule)
p(X)

= argmax p(x|y)p(y)



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j\/ — argglaXp(y |X1, c oo Xk) (Posterior)

(Prediction)



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j\/ — argglaXp(y |X1, c oo Xk) (Posterior)

(Prediction)

_ are max PXps - X 1Y) - POY) ) Baves e

Y p(X19°--9Xk)

4

Independent of y



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j\/ — argglaXp(y |X1, c oo Xk) (Posterior)

(Prediction)

_ are max PXps - X 1Y) - PO) ) Baves e

Y p(X19°--9Xk)

= arg Mmax pXy,.... X |y) p(y)

\ ) *
Y

Class conditional
likelihood

Class prior



Naive Bayes Assumption

Conditional independence of feature attributes
pX,.... X [ yp(y) = I p(X; | y)p(y)

1

Easier to estimate
(using MLE!)




What we’ve learned today...

 K-Nearest Neighbors
 Maximum likelihood estimation
* Bernoulli moqdel
* (Gaussian model
 Nalve Bayes

» Conditional independence assumption
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Thanks!

Based on slides from Xiaojin (Jerry) Zhu and Yingyu Liang (http://pages.cs.wisc.edu/~jerryzhu/cs540.html),
and James Mclnerney



http://pages.cs.wisc.edu/~jerryzhu/cs540.html

