

CS 540 Introduction to Artificial Intelligence Perceptron

Sharon Yixuan Li University of Wisconsin-Madison

March 4, 2021

Today's outline

- Naive Bayes (cont.)
- Single-layer Neural Network (Perceptron)

Part I: Naïve Bayes (cont.)

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ***) vs. p(No | ***)

- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day *m*}, m={1,2,...,N}

• Step 1: Convert the data to a frequency table of Weather and Play

Weather	Play	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Sunny	Yes	
Sunny	Yes	
Overcast	Yes	
Rainy	No	
Rainy	No	
Sunny	Yes	
Rainy	Yes	
Sunny	No	
Overcast	Yes	
Overcast	Yes	
Rainy	No	

Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table				
Weather	No	Yes		
Overcast		4		
Rainy	3	2		
Sunny	2	3		
Grand Total	5	9		

Like	lihood tab	le		
Weather	No	Yes		
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64		

$$p(Play = Yes) = 0.64$$

$$p(|Yes| Yes) = 3/9 = 0.33$$

Step 3: Based on the likelihoods and priors, calculate posteriors

Step 3: Based on the likelihoods and priors, calculate posteriors

```
P(Yes)
=P( Yes)*P(Yes)/P( Yes)
 =0.33*0.64/0.36
 =0.6
P(No
=P( No)*P(No)/P( )
 =0.4*0.36/0.36
 =0.4
```

P(Yes| ***) > P(No| ***) go outside and play!

$$\hat{y} = \arg\max_{y} p(y \mid \mathbf{x}) \quad \text{(Posterior)}$$

$$= \arg\max_{y} \frac{p(\mathbf{x} \mid y) \cdot p(y)}{p(\mathbf{x})} \quad \text{(by Bayes' rule)}$$

$$= \arg\max_{y} p(\mathbf{x} \mid y) p(y)$$

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior) (Prediction)

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \arg\max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

Independent of y

What if **x** has multiple attributes $\mathbf{x} = \{X_1, \dots, X_k\}$

$$\hat{y} = \underset{y}{\operatorname{arg}} \max_{y} p(y | X_1, \dots, X_k)$$
 (Posterior)

(Prediction)

$$= \arg\max_{y} \frac{p(X_1, \dots, X_k | y) \cdot p(y)}{p(X_1, \dots, X_k)}$$
 (by Bayes' rule)

$$= \underset{y}{\operatorname{arg\,max}} p(X_1, \dots, X_k | y) p(y)$$

Class conditional likelihood

Class prior

Naïve Bayes Assumption

Conditional independence of feature attributes

Part I: Single-layer Neural Network

How to classify

Cats vs. dogs?

Inspiration from neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units

Cats vs. dogs?

Linear Perceptron

Given input x, weight w and bias b, perceptron outputs:

$$f = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

Input

Cats vs. dogs?

Given input x, weight w and bias b, perceptron outputs:

$$o = \sigma\left(\langle \mathbf{w}, \mathbf{x} \rangle + b\right)$$

$$o = \sigma\left(\langle \mathbf{w}, \mathbf{x} \rangle + b\right)$$

$$\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$
Activation function

Cats vs. dogs?

• Goal: learn parameters $\mathbf{w} = \{w_1, w_2, \dots, w_d\}$ and b to minimize the classification error

Training the Perceptron

Perceptron Algorithm

```
Initialize \vec{w}. \vec{w} = \vec{0} misclassifies everything.
Initialize \vec{w} = \vec{0}
                                              Keep looping
while TRUE do
                                              Count the number of misclassifications, m
    m = 0
                                              Loop over each (data, label) pair in the dataset,
    for (x_i, y_i) \in D do
       if y_i(\vec{w}^T \cdot \vec{x_i}) \leq 0 then
                                          // If the pair (\vec{x_i}, y_i) is misclassified
           \vec{w} \leftarrow \vec{w} + y\vec{x}
                                          // Update the weight vector \vec{w}
                                           // Counter the number of misclassification
           m \leftarrow m + 1
        end if
    end for
    if m = 0 then
                                              If the most recent \vec{w} gave 0 misclassifications
        break
                                              Break out of the while-loop
    end if
end while
                                              Otherwise, keep looping!
```


From wikipedia

Example 2: Predict whether a user likes a song or not

Example 2: Predict whether a user likes a song or not Using Perceptron

- DisLike
- Like

Learning OR function using perceptron

The perceptron can learn an OR function

Learning NOT function using perceptron

The perceptron can learn NOT function (single input)

XOR Problem (Minsky & Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

This contributed to the first AI winter

Step Function activation

Step function is discontinuous, which cannot be used for gradient descent

$$\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid/Logistic Activation

Map input into [0, 1], a **soft** version of $\sigma(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$

$$sigmoid(x) = \frac{1}{1 + exp(-x)}$$

$$\mathbf{x} \in \mathbb{R}^{d}, y = \{-1, +1\}$$

$$p(y = 1 \mid \mathbf{x}) = \sigma(\mathbf{w}^{T}\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{T}\mathbf{x})}$$

$$p(y = -1 \mid \mathbf{x}) = 1 - \sigma(\mathbf{w}^{T}\mathbf{x}) = \frac{1}{1 + \exp(\mathbf{w}^{T}\mathbf{x})}$$

$$\frac{1.0}{0.8}$$

$$\frac{1.0}{0.2}$$

$$\frac{$$

Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximize likelihood estimate (on the conditional probability)

$$\max_{\mathbf{w}} \sum_{i}^{1} \log \frac{1}{1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i)}$$

Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximize likelihood estimate (on the conditional probability)

When training data is linearly separable, many solutions

Given: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

Training: maximum A posteriori (MAP)

$$\min_{\mathbf{w}} \sum_{i} -\log \frac{1}{1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i)} + \frac{\lambda}{2} ||\mathbf{w}||_2^2$$

- Convex optimization
- Solve via (stochastic) gradient descent

Tanh Activation

Map inputs into (-1, 1)

$$tanh(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}$$

ReLU Activation

ReLU: rectified linear unit (commonly used in modern neural networks) ReLU(x) = max(x,0)

Multilayer Perceptron

How to classify Cats vs. dogs?

How to classify Cats vs. dogs?

- Input $\mathbf{x} \in \mathbb{R}^d$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m$
- Intermediate output $\mathbf{h} = \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$

 σ is an element-wise activation function

• Output $\mathbf{f} = \mathbf{w}_2^\mathsf{T} \mathbf{h} + b_2$

Brief history of neural networks

What we've learned today...

- Single-layer Perceptron
 - Motivation
 - Activation function
 - Representing AND, OR, NOT
- Brief history of neural networks

Thanks!

Based on slides from Xiaojin (Jerry) Zhu and Yingyu Liang (http://pages.cs.wisc.edu/~jerryzhu/cs540.html), and Alex Smola: https://courses.d2l.ai/berkeley-stat-157/units/mlp.html