Which output function is often used for multi-class classification tasks?

- A Sigmoid function
- B Rectified Linear Unit (ReLU)
- C Softmax function
- D Max function

Which output function is often used for multi-class classification tasks?

- A Sigmoid function
- B Rectified Linear Unit (ReLU)
- C Softmax function
- D Max function

Suppose you are given a 3-layer multilayer perceptron (2 hidden layers h1 and h2 and 1 output layer). All activation functions are sigmoids, and the output layer uses a softmax function. Suppose h1 has 1024 units and h2 has 512 units. Given a dataset with 2 input features and 3 unique class labels, how many learnable parameters does the perceptron have in total?

Suppose you are given a 3-layer multilayer perceptron (2 hidden layers h1 and h2 and 1 output layer). All activation functions are sigmoids, and the output layer uses a softmax function. Suppose h1 has 1024 units and h2 has 512 units. Given a dataset with 2 input features and 3 unique class labels, how many learnable parameters does the perceptron have in total?

1024 * 2 + 1024 + 512 * 1024 + 512 + 512 * 3 + 3 = 529411

Consider a three-layer network with **linear Perceptrons** for binary classification. The hidden layer has 3 neurons. Can the network represent a XOR problem?

- a)Yes
- b)No

Consider a three-layer network with **linear Perceptrons** for binary classification. The hidden layer has 3 neurons. Can the network represent a XOR problem?

Solution:

A combination of linear Perceptrons is still a linear function.

Gradient Descent in neural network training computes the _____ of a loss function with respect to the model _____ until convergence.

- A gradients, parameters
- B parameters, gradients
- C loss, parameters
- D parameters, loss

Gradient Descent in neural network training computes the _____ of a loss function with respect to the model _____ until convergence.

- A gradients, parameters
- B parameters, gradients
- C loss, parameters
- D parameters, loss

Suppose you are given a dataset with 1,000,000 images to train with. Which of the following methods is more desirable if training resources are limit but enough accuracy is needed?

- A Gradient Descent
- **B** Stochastic Gradient Descent
- C Minibatch Stochastic Gradient Descent
- D Computation Graph

Suppose you are given a dataset with 1,000,000 images to train with. Which of the following methods is more desirable if training resources are limit but enough accuracy is needed?

- A Gradient Descent
- **B** Stochastic Gradient Descent
- C Minibatch Stochastic Gradient Descent
- D Computation Graph