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Logistics for the midterm exam

Logistics for the midterm exam:

1. The exam will be on Canvas. You will have a 24 hour period to start the midterm, but once you start, you will have a total of 1:45 to complete it. This is 90 minutes
for the test plus a 15 minute grace period to handle uploads or any other tech issues (explained below).

2. You may only use the course materials from this semester’'s website (slides, quizzes, homework assignments) during the midterm. You may not use any other
resources. You may not use search engines, collaboration tools or software, or anything else of that nature.

3. You may use calculators.
4. You may not share or communicate the midterm questions during or after the exam. This policy is strict.

5. Question types: the questions involve either multiple choice (some easy, some hard) and written questions. You can expect to see around 10 multiple choice and up
to 4-5 of the written questions. The written questions will allow you to show your work for partial credit. The multiple choice questions are answered in Canvas
directly; there will be an upload box for you to upload your solutions to the written questions.

Please use this dummy quiz to make sure it works. Also, make sure you test your ability to scan and send in the written answers. Do this early!

6. The sample questions are attached below; the answers will be released on Friday to encourage you to try them on your own. These questions will give you a sense
of how the midterm questions will be, but are not representative of the topics. Note that the topics are in the earlier post: https://piazza.com/class/kk1k70vbawp3ts?
cid=458

7. If you have questions or concerns, get in touch with the instructors.

Midterm_Sample_Questions.pdf
#pin

announcements



Today’s outline

 Deep neural networks

 Computational graph (forward and backward propagation)
 Numerical stability in training

» Gradient vanishing/exploding
* (Generalization and regularization

* Qverfitting, underfitting

* Weight decay and dropout
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Part |: Neural Networks as a
omputational Graph




Review: neural networks with one hidden layer

. d Input
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Review: neural networks with one hidden layer

X d
" dx 1

e

M

2=
y



Review: neural networks with one hidden layer

Key elements: linear operations + Nonlinear activations
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Review: Neural network for k-way classification

K outputs in the final layer

Hidden layer
M=3 neurons
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Review: Neural network for k-way classification

K outputs units in the final layer

Multi-class classification (e.g., ImageNet with k=1000)
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Review: Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Hidden layer
M=3 neurons
Input Output
N ; p(y|x) = softmax(f)
A 1
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Softmax

Turns outputs f into probabilities (sum up to 1 across k classes)

Output Softmax .
layer activation function Probabilities
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Deep neural networks (DNNs)
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Neural networks as variables + operations
a = sigmoid(Wx + b)
 Decompose functions into atomic operations

o Separate data (variables) and computing (operations)
« Known as a computational graph
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Neural networks as a computational graph

* A two-layer neural network




Neural networks as a computational graph

* A two-layer neural network
* Forward propagation vs. backward propagation
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Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z
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Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z
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Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z




Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z




Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z




Neural networks: backward propagation

* A two-layer neural network
 Assuming forward propagation is done
* Minimize a loss function L




Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L o0l ol
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Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L oL Ol

0z, 0z




Neural networks: backward propagation

* A two-layer neural network
 Assuming forward propagation is done
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Backward propagation: A modern treatment

* Define a neural network as a computational graph
 Must be a directed graph

* Nodes as variables and operations

* All operations must be differentiable
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Part lI: Numerical Stability



Gradients for Neural Networks

» Compute the gradient of the loss £ w.r.t. w,

o  o¢ oh®  oh™*! oh’
OW!  ohd ohd-1""" oht OW!

Wikipedia



Two Issues for Deep Neural Networks ﬁ oh'*!
ohi

1=t

Gradient Exploding Gradient Vanishing

0.8100 ~ 2 % 1071V



Issues with Gradient Exploding

» Value out of range: infinity value (NaN)
» Sensitive to learning rate (LR)
* Not small enough LR -> larger gradients
 Joo small LR -> No progress
* May need to change LR dramatically during training



Gradient Vanishing

» Use sigmoid as the activation function

|
o(x) = o'(x) = o(x)(1 — o(x
- (x) = o(x)( (X))
0a{ SOmall Small
gradients gradients




Issues with Gradient Vanishing

» Gradients with value O
* NoO progress In training

* No matter how to choose learning rate
» Severe with bottom layers

* Only top layers are well trained

* No benefit to make networks deeper



How to
stabilize
training?




Stabilize Training: Practical Considerations

* Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication -> plus
* Architecture change (e.g., ResNet)

 Normalize
» Batch Normalization, Gradient clipping

* Proper activation functions
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Part lll: Generalization & Regularization
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Training Error and Generalization Error

 [raining error: model error on the training data
* Generalization error: model error on new data
« Example: practice a future exam with past exams

* Doing well on past exams (training error) doesn't
guarantee a good score on the future exam
(generalization error)



Underfitting —~— \/ WA

Ove I‘fitti n g Overfitting

Image credit: hackernoon.com



Model Capacity

» The ability to fit variety of functions

* Low capacity models struggles to ____._
fit training set ' ‘

» Underfitting
» High capacity models can

memorize the training set
» Overfitting



Underfitting and Overfitting

Data complexity

Simple Complex

Model Low Normal Underfitting
capacity

High Overfitting Normal



Influence of Model Complexity

D — —_—
Underfitting Optimum Overfitting

Also known as “Test

error”

Loss

Generalization loss

Training loss

Model complexity



Estimate Neural Network Capacity

* |t's hard to compare complexity
between different algorithms

* e.g. tree vs neural network



Estimate Neural Network Capacity

* |t's hard to compare complexity
between different algorithms

* e.g. tree vs neural network

* Given an algorithm family, two main
factors matter:

* The number of parameters
* The values taken by each parameter

d+ 1

(d+ Dm+ (m + Dk



Data Complexity

* Multiple factors matters
* # of examples
» # of features in each example
* time/space structure
o # of labels

B




How to regularize the model for
better generalization?




Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

0
Q
Training Emor: 0.100 1 Traning Emor. 0.160
Test Enor: 0259 Test Emor: 0.223

Bayes Emor.  0.210 Bayes Ermor.  0.210



Squared Norm Regularization as Hard Constraint

* Reduce model complexity by limiting value
range A

min £(w,b) subjectto |w|*< 6 y

» Often do not regularize bias b \
* Doing or not doing has little difference in

practice
 Asmall § means more regularization



Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

. Ao
min £ (w,b) + Ellwll



Squared Norm Regularization as Soft Constraint
* WWe can rewrite the hard constraint version as
. A
min £ (w,b) + —||w]||
2
* Hyper-parameter Acontrols regularization importance

e 1=0: no effect

e L —> oo,w*¥ > ()
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Hinton et al.




Apply Dropout

» Often apply dropout on the output of hidden fully-
connected layers

MLP with one hidden layer Hidden layer after dropout

n=o(W;x+Db) \1%%({ $

v = cropout) L & B
= , N K > %V

0T T o= =y SN

y = softmax(o) 0/ 'Q

courses.d2l.ai/berkeley-stat-157



Dropout

PW
Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output

at training time.



Dropout

Hinton et al.

Classification Error %
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Figure 4: Test error for different architectures

with and without dropout. The net-

works have 2 to 4 hidden layers each
with 1024 to 2048 units.



What we’ve learned today...

 Deep neural networks

 Computational graph (forward and backward propagation)
 Numerical stability in training

» Gradient vanishing/exploding
* (Generalization and regularization

* Qverfitting, underfitting

* Weight decay and dropout
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Thanks!

Based on slides from Xiaojin (Jerry) Zhu, Yingyu Liang, Yin Li (CS540 @ UW-Madison) and Alex Smola:
https://courses.d?l.ai/berkeley-stat-157/units/mip.html



https://courses.d2l.ai/berkeley-stat-157/units/mlp.html

