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Data-Driven Descent (PhD work)

Method Sample complexity
Gradient descent Local optimality
Nearest Neighbor 𝑂(𝜖!")

[Y. Tian and S. Narasimhan, CVPR 10] 𝑂(𝐶" log 𝜖!#)
[Y. Tian and S. Narasimhan, ICCV 13,
Marr Prize Honorable Mention]

𝑂(𝐶#" + 𝐶$ log 𝜖!#)

To achieve ||𝑝 − 𝑝∗|| ≤ 𝜖

O

Deformed image 𝐼!∗ Landmark estimation 𝑝Template 𝐼"



DarkForestGo

DarkForest versus Koichi Kobayashi (9p) 

[Better Computer Go Player with Neural Network and Long-term 
Prediction, Y. Tian and Y. Zhu, ICLR 2016]



ELF OpenGo

[ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

Name (rank) ELO (world rank) Result

Kim Ji-seok 3590 (#3) 5-0

Shin Jin-seo 3570 (#5) 5-0

Park Yeonghun 3481 (#23) 5-0

Choi Cheolhan 3466 (#30) 5-0

Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players

Vs top professional players



Contract Bridge

SoTA performance on Bridge Bidding

A new theoretical framework for
multi-agent collaborative games

[Y. Tian et al., Joint Policy Search for Collaborative Multi-agent Imperfect Information Game, NeurIPS 2020]

Qucheng GongYuandong Tian Tina Jiang



Great Empirical Success

GPT-3



How do deep models work?

Input Output

“Some Nonlinear Transformation”This is an apple



Three Major Problems

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

“Neural Network is a universal approximator”
“Deep Models can express functions more efficiently than shallow ones”

“Gradient vanishing/exploding”
“Gradient Descent might get stuck at saddle point / local minima”
“Can GD/SGD go to global optima? How fast?”

“Does zero training error often lead to overfitting?”
“More parameters might lead to overfitting.”

+ -
+-



Supervised Learning

Student Network
(Learnable Parameters)

Dataset
{(𝑥" , 𝑦")}

Supervision



Student-Teacher Setting

Teacher/Oracle Network
(Fixed parameters)

Student Network
(Learnable Parameters)

No direct supervision

Supervision

By Network
Expressibility



Why Student-Teacher Setting?

Understanding how
Deep Models work

Expressibility

Optimization

Generalization

Provide a target function with bounded complexity

Student Specialization yields generalization

Study fine dynamics behaviors by comparing with teacher

+ -
+-

Our focus



Old History of Teacher-Student Setting

[On-line learning in soft committee machines, Saad & Solla, Phys. Rev 1995]
[S. Goldt et al, Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup, NeurIPS 2019]

One layer of trainable parameters
Nonlinear function 𝜎 𝑥 = erf(𝑥 / 2)
Locally linearized analysis around symmetry breaking plane and final solution

Study when the input dimension 𝑛% = 𝑚% → +∞ (i.e., thermodynamics limits)

In some situations, student nodes are “specialized” to teacher node

𝜖 𝑱 =
1
2

𝑓 𝑱, 𝝃 − 𝑓 𝑩, 𝝃 -
𝝃 𝑓 𝑱, 𝝃 =4

"/0

1

𝜎(𝑱" ⋅ 𝝃)



Simplest Teacher Student Setting: 
ReLU networks with Gaussian Inputs

1
1

1

j

Student 
network

Teacher
network

We focus on population gradient

[Y. Tian, An analytical formula of population gradient for two-layered ReLU network and 
its applications in convergence and critical point analysis, ICML 2017]



An Analytic Formula

Close-form Population Gradient:

Linear component. 
Global convergence if this is the only term

Nonlinear component 
due to ReLU gating
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[Y. Tian, An analytical formula of population gradient for two-layered ReLU network and 
its applications in convergence and critical point analysis, ICML 2017]

𝒘𝒘∗



Multi-layer ReLU network

Teacher/Oracle Network
(Fixed parameters)

(Over-realized) Student Network
(Learnable Parameters)

No direct supervision

1. Finite 𝑚% and 𝑛%
2. Works for 𝑛& ≥ 𝑚&
(no crazy overparameterization)

[Y. Tian, Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension, ICML 2020]

Different From Neural Tangent Kernel



Student Specialization

Input space

𝑤3∗

𝑤4 𝜕𝐸4
𝜕𝐸3∗

𝜕𝐸': Boundary of node k

𝜕𝐸(∗: Boundary of teacher node j

𝝐-alignment: sin 7𝜃(' ≤ 𝜖 and 𝑏( − 𝑏'∗ ≤ 𝜖
*𝜃!"

teacher j student k

Teacher/Oracle Student



Main Question

Student aligns
with the teacher

è Small training error leads to good generalization

? ? ?
Small gradient
at every training sample
during training



Notation

GD: expectation taken over the entire dataset
SGD: expectation taken over a batch

Layer l – 1
(𝑛,!# nodes)

Layer l
(𝑛, nodes)

Weight update rule:

Activation

Gradient



Lemma1: Recursive Gradient Rule

Teacher mixture Student mixture

For layer 𝑙, there exists 𝐴5(𝑥) and 𝐵5(𝑥) so that:

Student gradient
Student gating

𝐴5(𝑥) and 𝐵5(𝑥) are piece-wise constant.



A Demonstrative Case:

Two-layer Network, Zero Gradient and 
Infinite Samples



Simple 2D experiments
Student Boundary
Teacher Boundary



Simple 2D experiments Norm of the
fan-out weights.



L-shape curve at convergence

Student nodes

Normalized correlation of a student node
to its best correlated teacher (degree of specialization)

10x over-realization



L-shape curve at convergence



Assumption of the dataset

Infinite dataset!

(Region needs to have interiors)

No parametrized assumptions

Full rank



Assumptions on Teacher Network

• Cannot reconstruct arbitrary teachers
• e.g., all ReLU nodes are dead

Distinct teacher nodes Teacher’s ReLU boundary are visible in the dataset



Definition of “Observation”

Teacher j is observed by a student k

Observer
boundary

Teacher boundary

𝐸': Activation region of node k

𝐸'

𝜕𝐸(∗

𝑤'

𝜕𝐸!∗ ∩ 𝐸# ≠ ∅



Main results: Alignment could happen!

Teacher j is aligned with
at least one student k’

Teacher node j is observed
by a student node k

𝒈$ 𝑥 = 𝟎 for all 𝑥 ∈ 𝑅%
(all input gradients at layer 1 is
zero at all training samples)



What happens to unaligned students?

Aligned
(can be one-to-many)

How pruning works



Multi-Layer case: Alignment could happen!

teacher j
student k’ observer k

Piece wise constant, apply the same logic per region!

Layer 0

Layer 1

Layer 2

Layer 3

Lowest Layer



Training Progresses

Layer 1

Layer 2

Layer 3

Layer 4

For 2-layer:



Solutions can be connected by line segments

[Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs, Garipov et al. NeurIPS 2018]

[Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets, Kuditipudi et al, 2019]
[Essentially No Barriers in Neural Network Energy Landscape, Draxler et al, 2018]



Student Solution 1

Un-specialized

Un-specialized

Student Solution 2

Linear segment

Linear segment

Linear segment

(a)

(b)

(c)

(d)

Our Explanation



Realistic Case

Student Specialization with 2-layers ReLU nets,
Small Gradient and Finite Samples



Polynomial Complexity for 2-layered Network
To achieve 𝜖-alignment between a teacher j and student k 𝐾# = 𝑚# + 𝑛#

Small gradient

Sample Complexity of original Dataset 𝐷

Teacher-agnostic augmentation
D’ = Aug(D)
|D’| = (2d+1)|D|

Original
Dataset 𝐷

Augmentation



Lesson 1: Stronger teacher node learns faster

𝛼"#: = 𝒗"$𝒗#∗

large small

Strong teacher nodes are learned faster

1. Robust to Noise!😃
2. Hard to learn weak teacher nodes😢

Gradient Condition:



Weak teacher nodes are slow to learn

Weak teacher Strong teacher

Epoch Epoch Epoch Epoch

Teacher j:



Lesson 2: Data augmentation Matters
Teacher-agnostic augmentation

Original
Dataset 𝐷

Augmentation

Teacher-aware augmentation

Original
Dataset 𝐷

Augmentation

𝒘𝒍
∗

Small gradient

Sample Complexity of original Dataset 𝐷

Linear w.r.t 𝒅

No 𝒅



Teacher-Agnostic versus Teacher-aware

#Samples #Samples



Multi-layer case

teacher j
student k’ observer k

Layer 0

Layer 1

Layer 2

Layer 3

Lowest Layer

Small gradient Sample Complexity of original Dataset 𝐷

Q: #boundaries of hyperplanes (w.r.t network depth)



CIFAR 10
1. Train a conv teacher network of size 64-64-64-64.
2. [Construct Oracle] Prune the teacher network to [45-32-32-20]
3. Then train a student network to mimic teacher‘s output (before softmax)

The student network has more parameters



Understanding Self-supervised 
Learning with Dual Deep Networks

Yuandong Tian Lantao Yu Xinlei Chen Surya Ganguli

Submitted to ICLR 2021

A theoretical framework that explains
1. Why self-supervised learning with deep ReLU models works
2. Why a good representation is learned without supervision
3. Why BYOL doesn’t need negative samples



Data Augmentation Target 𝒲&

Online 𝒲' predictor

Loss

Self-supervised Learning (SSL)

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, arXiv 2020]
SimCLR: [T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]

Dataset

No Human Label is Needed! 



Data Augmentation Target 𝒲&

Online 𝒲' predictor

Loss

Self-supervised Learning (SSL)

Dataset

No Human Label is Needed! 

Why a good representation can be learned this way?

Roles played by Neural Network, Data Augmentation 
and Training Procedure?

Why BYOL doesn’t need negative pairs? 

BYOL: [J. Grill, Bootstrap your own latent: A new approach to self-supervised Learning, arXiv 2020]
SimCLR: [T. Chen, A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020]



Similarity with Teacher Student Setting

Teacher 𝒲# = 𝒲∗

Student 𝒲%
L2 Loss

The mathematical framework is similar! 

[Y. Tian, Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension, ICML 2020]



SimCLR

InfoNCE

Data

If 𝑢 = 𝑣 = 1, then the formulation is the same as SimCLR’s formulation
Since −𝑟 = − 𝑢 − 𝑣 &= 2sim 𝑢, 𝑣 − 2

Different sample from 
the same distribution

Data Augmentation

Positive pair

Negative pair



The Covariance Operator

Connection 

Weight Update for SimCLR at layer l:

Augment-mean Connection

Positive number related 
to Contrastive loss

Covariance operator (PSD)

Jacobian

Learning rate

Layer l



What does it mean?

• Always PSD at any stage of training

• Weight at each layer undergoes a PSD transformation

• Strong eigen mode leads strong weight growth along that direction

The Covariance Operator

𝑊5(𝑡)

𝑊5(𝑡 + 1)

Covariance 
Operator

What are the strong eigen models in the covariance operator?
To understand that, we need a generative model of the data.



Nature

Using Generative Models to understand 
Covariance Operator

𝒛𝟎: Class (sample) label 
𝒛):   Nuisance Transformations given by Data Augmentation

Generative 
model

𝑧% 𝒙(𝑧%, 𝑧&)

𝑧&

Data Augmentation
(𝑧% remains the same but 𝑧′ changes)

𝒙(𝑧%, 𝒛𝟏& )

𝒙(𝑧%, 𝒛𝟐& )
input



One-layer one-neuron example

𝑧% = 1 𝑧% = 2

Two objects 11 and 101 translating in 1D space

Nuisance 𝑧′

Linear neuron: Nothing is learned. 

ReLU neuron: Enforce what is initialized! 

Feature to represent pattern 10

d
𝒙(𝑧%, 𝑧&)



A two-layer example
Augment-Average Connection for both layers:

Weights of two layer are 
enforcing each other

where



z

Hierarchical Latent Tree Models (HLTM)

Deep ReLU networksHierarchical Latent 
Tree Model (HLTM)

FC

FC

FC

Nuisance latent 𝑧0
𝒙(𝑧%, 𝑧0)



BYOL Setting

[J. Grill et al, Bootstrap your own latent: A new approach to self-supervised Learning, arXiv]

Data Augmentation Target 𝒲&

Online 𝒲' predictor

L2 Loss

Dataset

No Negative Pairs !!!



Is BatchNorm the Secrete Weapon?

Zero-mean property. 
After BN, Backpropagated Gradient is zero-mean in each minibatch:

Layer l – 1 Layer l
𝑛# nodes𝑛#$% nodes

ReLU
ReLU



With Normalization and 𝓦 ≠𝓦′

Without 
normalization

*Some assumption is need to get to here, see paper for the details.

Correction 
due to normalization

Enforce similar representation within data augmentation



Why can BYOL work?

*Some assumption is need to get to here, see paper for the details.

Approximate covariance operatorNegated covariance operator
(but second order w.r.t the predictor!!)

If 𝓦 has an extra predictor



BYOL Setting (Top-1 Performance in STL-10)

No predictor, things do not work

BN is critical 
EMA is helping



Zero-mean Gradient matters. 

x = x - x.mean(0)

x = x / x.std(0)

x = x - x.mean(0).detach()

x = x / x.std(0).detach()

Ablation Study of Batch components



Reinitializing Predictors Works

The predictor is not necessarily “optimal” as suggested in the original BYOL paper.



Understanding Adversarial 
Samples using Teacher-Student 

Yuandong Tian *Tiffany Cai Xinyun ChenZhoulin Yang*

Submitted to AISTATS 2021

Zhaoxi Chen Bo Li

* = Equal Contribution



Adversarial Samples

Stop sign à a 45 mph sign



Adversarial Samples: not Bugs but Features

[A. Ilyas, et al, Adversarial Examples Are Not Bugs, They Are Features, 2019]

Garbage In à Signal Out 😱



A Natural Explanation

Original data Adversarial input

𝑦 → 𝑦′
Original label Wrong label

Normal training:   train with (𝑥, 𝑦)

Fancy training:   train with (𝑥’, 𝑦’ = 𝑓∗(𝑥’))
(wrong sample, correct mapping)

Both are valid pairs from the original network 
à They both train well. 

𝑥 → 𝑥′

𝑓∗ 𝑓



Student Specialization

Teacher (Oracle) 𝒇∗

Specialized Unspecialized 

Full rank input space à Specialization happens. 
Contributions of unspecialized nodes are zero. 

Low rank input à ??

Student  f



Student Specialization under Low-rank Input

Input Data Subspace 𝒳

Student node

Teacher node

𝒰𝟏 = 𝒳

Projection 𝒰𝟏



𝒰𝟐

Student Specialization under Low-rank Input

Input Data Subspace 𝒳

Pr
ojec

tio
n 𝒰 𝟐

Adversarial 
samples



An Empirical Model

𝒘2 = 𝒘3∗ + 𝜖56𝒖𝒌𝐢𝐧 + 𝜖:;<𝒖𝒌𝐨𝐮𝐭
Student node k 

𝑗 𝑘
𝒘!∗ 𝒘#

Teacher node k 

Input Data Subspace 𝒳

𝒖𝒌𝐢𝐧

𝒖𝒌𝐨𝐮𝐭

Will adversarial training improve the 
robust accuracy by remove the two? 



Revise Adversarial Samples

Teacher (Oracle) 𝒇∗ Student  f

𝑥

𝐵(𝑥, 𝜖)

Data Adversarial Oracle Adversarial Fix target

Logit Training Label Training

min
1

𝐿[𝑓 𝑥;𝑤 , 𝑓∗ 𝑥 ] min
1

𝐿[𝑓 𝑥;𝑤 , argmax 𝑓∗ 𝑥 ]



Experiments using CIFAR 10 images
Use CIFAR 10 images as low-dimensional and finite sample input

Use a 4-layered teacher network (trained on CIFAR10 and then pruned to be 
45−32−32−20) as the oracle

Using L2 loss and Oracle Adversarial

(Use PGD in practice: back-propagate 𝑓 and 𝑓∗ to get signed gradient, and apply to x iteratively)

Train with pair 𝑥), 𝑓∗ 𝑥) . i.e., ground truth label 𝑓∗(𝑥)) for adversarial sample 𝑥′



Experiments using CIFAR 10 images

𝜌!": Normalized correlation between j and k:

Best NC(j) = max
&'()*+' "

𝜌!"

Sorted Best NC curve



Data Augmentation matters 

With data augmentation,

we get better performance



𝜖56 and 𝜖:;<

Robustness is consistent with student specialization. 



Training with 𝜖56 and 𝜖:;< only adversarial samples

𝜖23 and 𝜖456 is only controlled in the first layer. 

Input Data Subspace 𝒳

𝒖𝒌𝐢𝐧

𝒖𝒌𝐨𝐮𝐭



Huge Difference between logits and label training



Label training helps in 𝜖:;< but not 𝜖56

𝜖,-. drops



Training with CCAT (AT without true label)

Larger 𝛿, smaller 𝜆
more uniform label K𝑦

Model
(150 epochs)

Robust 
Accuracy

CCAT
(𝜌 = 5) 47.25%

CCAT 
(𝜌 = 10) 52.04%

CCAT 
(𝜌 = 20) 49.33%

Adversarial 
Training (logits) 84.07%

K𝑦 = 𝜆 𝛿 onehot 𝑦 + 1 − 𝜆 𝛿
1
𝐾

(𝑥, 𝑦)

𝛿

(𝑥0, K𝑦)



Thanks!


