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1 Introduction:

1.1 Catastrophic Forgetting:

Goal of class-incremental learning is to learn a model that performs well on
previous and new tasks without task boundaries. But it suffers from
catastrophic forgetting.

Training Neural Networks on new tasks causes it to forget information learned
from previously trained tasks, degrading model performance on earlier tasks.

Primary reason for catastrophic forgetting is limited resources for scalability.

1.2 Class Incremental Learning Setting

(x, y) € D, T isasupervised task mapping x = y

For task T, corresponding dataset is D: and coreset is D't.1 € D1 U D>
contains representative data of previous tasks T1.t1)={T1, ..., Tt }. For task T
corresponding labeled training data used is represented as D™ =Dy U D" .

M:= {60, D1+ }is a set of learnable parameters of a model where 0 indicates
shared task parameters and @1+ ={@1, ..., @: } are task specific parameters.

2. Local distillation & Global distillation

2.1 Local distillation:

Train the model M: by minimizing the classification loss: Lcis(8, @1t ; D™ ) .

In the class incremental learning setting, the limited capacity of coreset causes
the model to suffer from catastrophic forgetting. To overcome this issue,
utilize previously trained model M+.1, that contains knowledge of previous
tasks to generate soft labels: Optimize Y.21 Lost (8, @5 ; P, Dt ), where Py =
{67, @P1t1)} = M1 is a previous trained model



e Then minimize the joint objective: Las(8, @1t ; D™ ) + X 21 Last (6, @s ; P, Dt )

e Solving the above optimization problem is called local knowledge distillation.
Transfers the knowledge within each of the tasks. The issue with local
knowledge distillation is that is defined in a task-wise manner and misses the
knowledge about discriminating between classes in different tasks.

2.2 Global distillation:

e Distill the knowledge of reference models globally by minimizing the
following loss: Lgst(6, @1:t-1) ; Pe, D™ U DY)

® Learning using the above function causes bias, since P: does not have
knowledge regarding the current task, hence performance on the current
task is degraded. So introduce teacher model C: = {6¢, @%} specialized to
learn the current task Tt: Last(6, @+ ; Ct, Di'™ U D% ), where teacher model
Ciis trained by minimizing Las(6%, @; Dx)

® P:learns to perform tasks T1.-1) and C: learns to perform the current task
T: , but knowledge distillation between T1.+1)and T: is not captured by the
either of the reference models. Define @, an ensemble of reference
models P: and C:: ensemble Q: : Last(6, @1 ; Qr, DY)

e The global distillation model learns by optimizing the following loss:

Lcls(e, D1 ; Dt ) + Ldst(e, @1:(t-1) ; Py, DM U D ) + Ldst(e, @r; Cy, Dt
U D% )+ Lgst(6, O1:1; Qr, DY)
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3. Fine-Tuning and Normalization
3.1 Normalization:

e Since the amount of data from the previous tasks is smaller than the
current task, model prediction is biased towards the current task. To
remove the bias, fine tune the model after the training phase by scaling the
computed gradient from the data with label k.

(k) _ 1 . . . . . .
o w¥p= , scaling the gradient is similar to feeding data
= Gy eb y=k]] gt &

multiple times (data weighting). Normalizing weights by multiplying them

with lDl/ITI to balance the dataset D

3.2 Fine-tuning:

e Fine- tune task-specific (@1.:) using data weighting to remove any bias from
training data and to equally weigh training data for all tasks. Also, fine-
tuning shared parameters (8) is not required since it already contains
relevant information from all training data.



® Loss Weight: balance the contribution of each loss by the relative size of
IT|

each task learned in the loss; wl = T
1:t

4. 3-step Learning Algorithm
Learning strategy has three steps:
o Training C: specialized for learning the current task T

o Training M: through global knowledge distillation of reference models P:,

Q:, G

o Fine-tuning model parameters using data weighting.

Algorithm 1 3-step learning with GD.

1:t=1

2: while true do

3:  Input: previous model P, = M,;_, coreset Dy°%,
training dataset D;, unlabeled data stream Dy+1d

4: Output: new coreset Ds°*, model M; = {0, ¢1.+}

5: DI* =D

6: NC = |Dfirl , ND = |Dfrn|

;

8

9

Sample D§** from Dy1¢ using Algorithm 2
Train C; by minimizing Eq. (12)
. ift > 1 then
10: Train M; by minimizing Eq. (9)
([ Fine-tune ¢;.; by minimizing Eq. (9),
with data weighting in Eq. (10)

12:  else
13: Mt = Ct,
14:  endif

15:  Randomly sample Df°" C D;*™ such that

{(z,y) € Di**|ly = k}| = Neo/[Tv4| for k € Ti.
16: t=t+1
17: end while

5. Sampling External Dataset
5.1 The main issues with using unlabeled data in knowledge distillation.
o Training is computationally expensive

o Most of the unlabeled data might be irrelevant to the tasks the
model learns



The paper proposes a sampling method to sample an external dataset from large
stream of unlabeled data that benefits knowledge distillation:

5.2 Confidence Calibration

Sampling external data that is expected to be in previous tasks is desirable, since
it alleviates catastrophic forgetting. Neural Nets tend to be highly overconfident
as they produce prediction with high confidence for OOD data. To achieve
confidence calibrated outputs, model learns from certain amount of OOD data
and data from previous tasks:

e For the model to produce confidence calibrated outputs, following
confidence loss function is considered: Lenf (0,0 ; D ) =

WZ%D Yyer[—logp(ylx; 6,0)]

® During 3-step learning, training C: has no reference model hence it learns
from confidence loss. By optimizing on confidence loss, model learns to
produce predictions with low confidence for OOD data.

e (: learns by optimizing Las(0%, @%; Dt) + Lent (65, @%; D1 U DY)

Algorithm 2 Sampling external dataset.

1: Input: previous model P; = {67, ¢ﬁ(t71)},
unlabeled data stream Dy'¢, sample size Np,
number of unlabeled data to be retrieved N,y ax

: Output: sampled external dataset D*®

prrev — @) DOOD — @

: Nprev = 0.3Np, Noop = 0.7Np

. N() 2 |{(,5.p) € D™y = k}]

: while |DOOD‘ < Noop do

Get = € Dy*19 and update DOOP = DOOP U {2}

: end while

9: Nret = Noop
10: while Ny < Nppax do
11:  Get 2 € Dy*19 and compute the prediction of P:

[N e N R T )

p = maxy, p (y\a*: (97),(1)713:(1‘_1)>,

9 = arg max, p (y}a’: o7, qﬂﬁ("”)
12z if N(9) < Nprev/|T1:(¢—1)| then

13: perey = peevi )i, 45, P) }

14:  else

15: Replace the least probable data in class 3:
(2',9,p") = argming, , »yeDre |y—g} P

16: if p’ < p then

17: D — (D (o, §,p/)}) U { (2. . 5)}

18: end if

19:  end if

20: Nrcl = Neet + 1
21: end while
22: Return D§** = DOP U {z|(z,y,p) € D"}



6. Related Work
6.1 Continual lifelong learning: class/task/data incremental learning
6.2 Methods: model-based and data-based

® Model based: parameters for new tasks are directly constrained to be
around that for previous tasks

e Data based: data distribution from previous tasks are used to distill
knowledge for later tasks; previous works focus on task-wise local
distillation, previous state-of-art: LwF, DR, E2E.

6.3 Proposed method: GD

7. Experiments

7.1 Experimental settings:
e Llabeled: CIFAR_100,ImageNet ILSVRC 2012
e Unlabeled: Tinylmages, ImageNet2011

e Design tasks: total 100 classes, divide into splits of 5,10,20--task size:
20,10,5

® Hyper parameters: WRN-16-2, coreset size=2000, temperature for
smoothing softmax probabilities: 2 for P,C, 1 for Q

7.2 Metrics:

The accuracy of the s-th model at r-th task, s>=r:

1 =7z
Ars = oy 2. M@(@M.) =)
r (

z,y)EDrest

ACC: weighted combination of accuracy from all tasks and all models:

- 1 t s |77|
ACC=— g; T A,

FGT: weighted combination of performance decay:



i t s—1 |7;|
FGT = t_ Z (Ar,r - Ar,s)7

7.3 Results:

e Overall performance:

Table 1. Comparison of methods on CIFAR-100 and ImageNet. We report the mean and standard deviation of ten trials for CIFAR-100
and nine trials for ImageNet with different random seeds in %. 1 (]) indicates that the higher (lower) number is the better.

Dataset CIFAR-100 ImageNet
Task size 5 10 20 5 10 20
Metric | ACC(1) | FGT () | ACC (1) | FGT({) | ACC (1) | FGT () | ACC (1) | FGT () | ACC (1) | FGT () | ACC (1) | FGT ({)
Oracle [78.6 +09(33+02 [77.6+08| 3.1 £02 (75.7+0.7|28+02 680+ 1.7|3.3+£02 669+ 1.6 3.1 £03|651+1.2(27+£02
Baseline [57.4 +1.2(21.0 £0.5(56.8 & 1.1(19.7 0.4 (56.0 & 1.0 18.0 0.3 (44.2 + 1.7(23.6 = 04 (44.1 = 1.6(21.5 £ 0.5(44.7 = 1.2|18.4 £ 05
LwF [24] |58.4 +1.3|193 +£0.5|59.5 £ 1.2|16.9 +0.4|60.0 &+ 1.0| 14.5 04 |45.6 + 1.9|21.5 £ 04|47.3 £ 1.5|18.5 £ 05|48.6 £ 1.2|153 £ 0.6
DR[12] [59.1 £1.4[19.6 +£05(60.8+1.2(17.1 £04(61.8+09(14.3 +£04[46.5+1.6(22.0+05(48.7+1.6(18.8+£05(50.7+1.2|15.1 £05
E2E [3] [60.2+13[165+05(62.6+1.1(12.8+04(65.1 £08| 89 +0.2 [47.7+19(17.9+04|50.8+1.5[13.4+04(539+1.2|88+03
GD (Ours) [62.1 £ 1.2|154 +04(65.0 £+ 1.1{12.1 £0.3[67.1 £ 09| 8.5+ 03 [50.0+ 1.7[16.8 04 [53.7 £ 1.5|12.8 £ 0.5(56.5 = 1.2| 8.4 + 04
+ext [663+12)98+03|68.1+11]77+03|689+1.0|55+04|552+18]9.6+04 |57.7+1.6|7.4+03|587+12|54+03
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Figure 2. Experimental results on CIFAR-100. (a,b) Arrows show the performance gain in the average incremental accuracy (ACC) and
average forgetting (FGT) by learning with unlabeled data, respectively. (c,d) Curves show ACC and FGT with respect to the number of
trained classes when the task size is 10. We report the average performance of ten trials.

e Effect of the reference models



Table 2. Comparison of models learned with different reference
models on CIFAR-100 when the task size is 10. “P.,” “C,” and “Q”
stand for the previous model, the teacher for the current task, and
their ensemble model, respectively.

P|lC| Q| ACC() | FGT)
v 629+ 12 | 14.7 £ 04
v |V 67.0+09 | 10.7 £ 03
v

65.7+o09 | 11.2 +02
681+t11| 7.7+ o03

ANEN

v

e Effect of the teacher for the current task

Table 3. Comparison of models learned with a different teacher
for the current task C on CIFAR-100 when the task size is 10.
For “cls,” C is not trained but the model learns by optimizing
the learning objective of C directly. The model learns with the
proposed 3-step learning for “dst.” The confidence loss is added
to the learning objective for C for “cnf.” We do not utilize Q for
this experiment, because “c1s” has no explicit C.

C Confidence | ACC (1) FGT (])
X 629 +12 | 14.7 + 04
cls 629+ 13 | 145 F 05
cls cnf 65.3+10 | 11.7 03
dst 06,24+ 10 | 11.2+05
dst ent 67.0 =09 | 10.7 £+ 03

e Effect of balanced fine-tuning



Table 4. Comparison of different balanced learning strategies on
CIFAR-100 when the task size is 10. “DW,” “FT-DSet,” and “FT-
DW?” stand for training with data weighting in Eq. (10) for the
entire training, fine-tuning with a training dataset balanced by re-
moving data of the current task, and fine-tuning with data weight-

ing, respectively.

Balancing | ACC (1) FGT (])
X 67.1 =09 | 11.5 + 03
DW 679 09 | 9.6 02
FT-DSet | 67.2 +1.1 | 8.4+ 02
FT-DW 68.1 11 | 7.7+ 03

e Effect of external data sampling

Table 5. Comparison of different external data sampling strate-
gies on CIFAR-100 when the task size is 10. “Prev” and “O0D”
columns describe the sampling method for data of previous tasks
and out-of-distribution data, where “Pred” and “Random™ stand
for sampling based on the prediction of the previous model 7 and
random sampling, respectively. In particular, for when sampling
OOD by “Pred,” we sample data minimizing the confidence loss
Lcns. When only Prev or OOD is sampled, the number of sampled
data is matched for fair comparison.

Prev OOD ACC (1) FGT (])
X X 650+11 | 12.1 03
X Random | 67.6 =09 | 9.0 £ 03

Pred X 660+12| 7.8+ 03

Pred Pred 657 11 | 102302

Pred | Random | 68.1 & 1.1 | 7.7 + 03

8. Conclusion

* Novel class-incremental learning scheme that uses large stream of unlabeled

data

¢ Global knowledge distillation

e Learning strategy to avoid overfitting to most recent task

e Confidence based sampling method to effectively leverage unlabeled dataset



9. Quiz questions:

9.1 Which of the following statements are true about the global distillation model

A) Training a reference teacher’s model to specialize in learning only the current
task

B) Knowledge distillation for the ensemble model is performed over both the
training data and sampled external unlabeled data

C) Fine-tuning using data weighting is performed over all model parameters

D) Global distillation model is trained through knowledge distillation over 3
reference models.

Answer: A and D

9.2 Which of the following statements are true about confidence calibration for
sampling:

A) Confidence calibration is performed on all reference models

B) It prevents the model from making overconfident predictions on OOD data by
optimizing over the confidence loss

C) Confidence calibrated outputs are produced by optimizing the loss function
over only the sampled external dataset.

D) Confidence calibrations increase the overall accuracy of the model by sampling
better external data from a stream of unlabeled data

Answer: Band D



9.3 Which external data sampling strategy provides the highest model accuracy:

A) Random sampling of OOD data and sampling based on predictions of previous
model

B) Only random sampling of OOD data

C) Sampling based on predictions of previous model and sampling OOD data
based on predictions of previous model

D) No external data sampling.

Answer: A

10: FAQ

Q: About quiz question 2 A, isn’t confidence calibration done for all reference
models?

A: It is done only on the current model, since at the next stage the current model
becomes a part of the previous models, and we don’t need to calibrate them
again. Only calibration for the current model is enough.



