

Densely Connected Neural Networks

CS 839 - Special Topics in AI: Deep Learning

Team: Diwanshu Jain Shri Shruthi Shridhar Sacha Jungerman

September 10, 2020

Overview

1. Motivation for ResNet

2. ResNet Overview

- 3. DenseNet
 - a. Motivation
 - b. Key Idea
 - c. Architecture Overview and Features
 - d. Experiments and Results
 - Advantages and Discussion
 - **Future Work**

Motivation for ResNet

Why stacking layers is a problem?

Is learning better networks as easy as stacking more layers?

- Problem 1: Vanishing/ Exploding gradients
 - Large derivatives → increase exponentially → 'Explodes'
 - Small derivatives → decrease exponentially →
 'Vanishes'

Why is it bad?

- Exploding Gradients:
 - Unstable
 - Incapable of effective learning
- > Vanishing Gradients:
 - Incapable of effective learning

Solution?

Reducing amount of Layers

Weight Initialization

 Check out <u>this article</u> for different kinds of initialization!

> ResNet

• More on this later.

Is learning better networks as easy as stacking more layers?

Problem 2: Degradation Problem in deeper networks

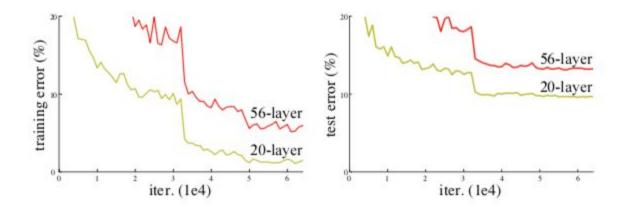


Fig 1. Training error (left) & test error (right) on CIFAR-10 with 20-layers and 56-layer 'plain' networks. [<u>ResNet</u>]

Why is it counterintuitive?

>> Analogy:

- Data which can be learned effectively using a linear representation: h(x) = bx + c; (b, c learned parameters)
- If $h(x) = ax^2 + bx + c$ is used while training • Expect $a \rightarrow 0$: This is what is observed in practice.

DOESN'T apply to neural networks!

Reason? Solution?

Optimization problems

ResNet

Key Idea

Deep Residual Learning:

• Fitting a *residual mapping* rather than *direct mapping*

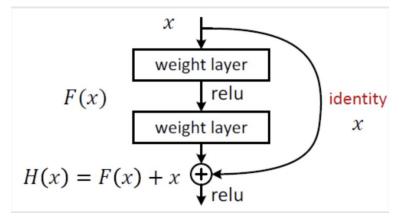


Fig 2. The operation *F* + *x* is performed by a shortcut connection and element-wise addition. [ResNet]

Key Idea

Why should this be helpful?

- Easier to optimize the residual mapping
- Difficulties in approximating identity mappings by multiple non-linear layers
- Easier for the solver to find the perturbations with a reference to an identity mapping

Architecture

Shortcut Connections

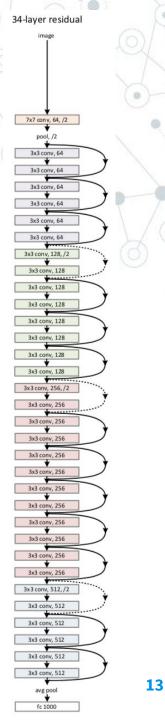
y = F(x, {W_i}) + x;
 F(x, {W_i}): Residual mapping

Eg. For 2 layers,

$$F = W_2 \sigma(W_1 x);$$
 σ : activation function

Dimension mismatch b/w F, x

Linear projection W_s $y = F(x, \{W_i\}) + W_s x;$



Did it solve the problems?

- Exploding/Vanishing Gradients:
 - Shortcut connections path allow gradient to reach those beginning nodes with greater magnitude by skipping some layers in between

Did it solve the problems?

Degradation Problem:

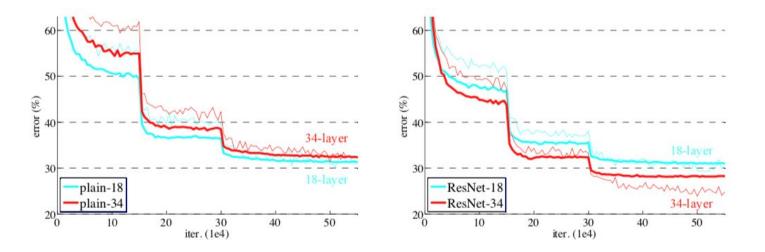


Fig 4. Training on ImageNet. Thin curves denote training error, bold curve denotes validation error. Left: Plain networks; Right: ResNets. The residual network have no extra parameter as compare to the plain counterparts. [ResNet]

Drawbacks

- The identity function and the output are combined by summation, which may impede the information flow in the network
 - Let $H_{l}(.)$ be a non-linear transformation, l = index of the layer; output of the l^{th} layer be x_{l} $x_{l} = H_{l}(x_{l-1}) + x_{l-1}$

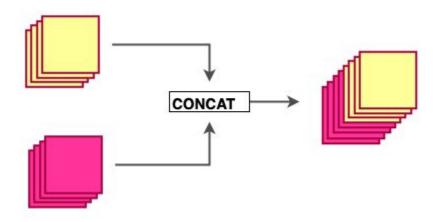
DenseNet found to achieve more accuracy!

3. DenseNet

Motivation

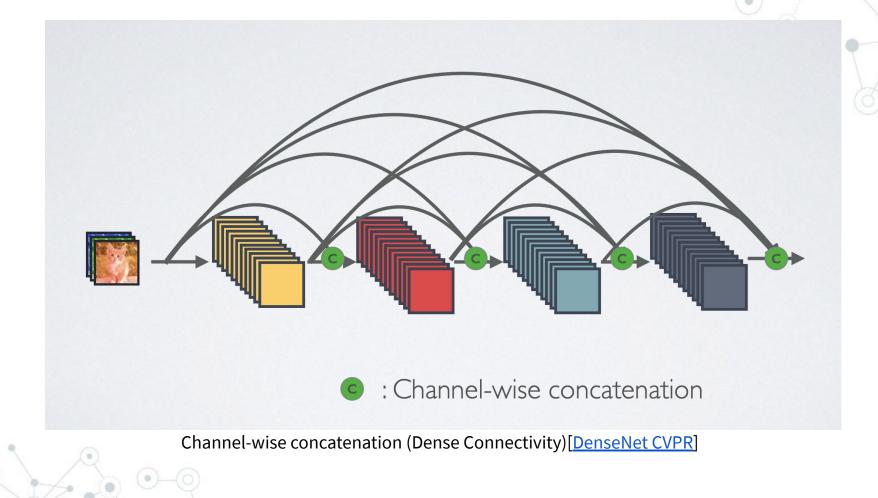
- To avoid vanishing gradient:
 - Shortcut connections between layers!
- Instead of summation (+), use concatenation ©
 - Ensure maximum information flow between layers

Connect each layer to every subsequent layer
 Feature maps connected through concatenation



Source: DenseNet Review Blog

Architecture Overview



Dense Connectivity:

- Aim: To improve information flow
- Let H_l(.) be a non-linear transformation, l = index of the layer; output of the lth layer be x_l

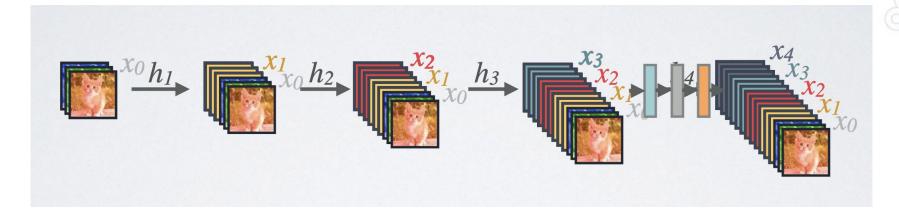
ResNets:
$$x_{l} = H_{l}(x_{l-1}) + x_{l-1}$$

DenseNets: $x_l = H_l([x_0, x_1, x_2, ..., x_{l-1}])$

Dense Connectivity:

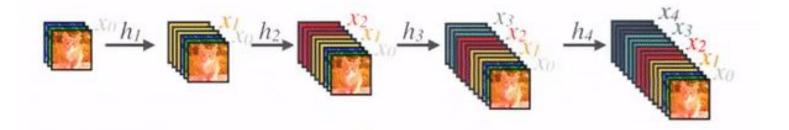
Forward Propagation [DenseNet CVPR]

Dense Connectivity:



Forward Propagation [DenseNet CVPR]

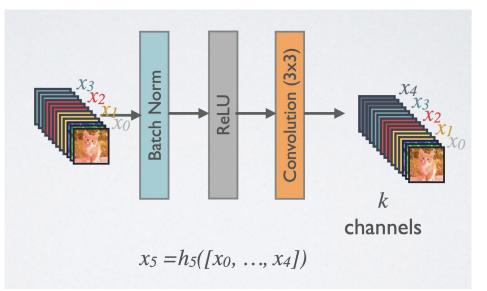
Composite layer: [pre-activation]



Composite Layer [DenseNet CVPR]

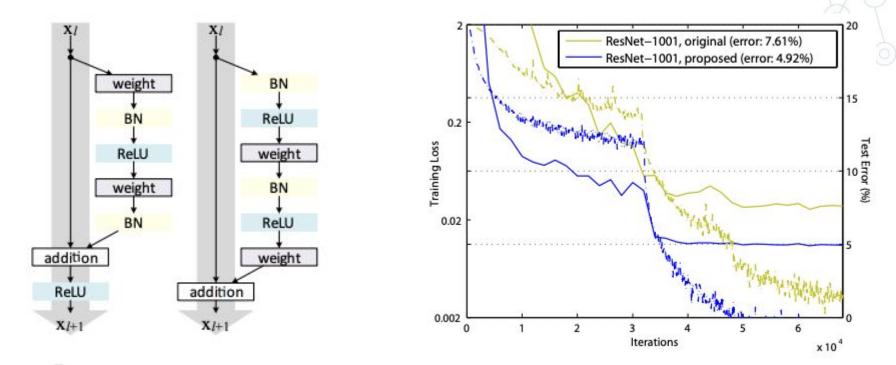
Composite function: [pre-activation]

- Ease of optimization
- Reduce overfitting [More on this <u>here</u>]



Composite Layer [DenseNet CVPR]

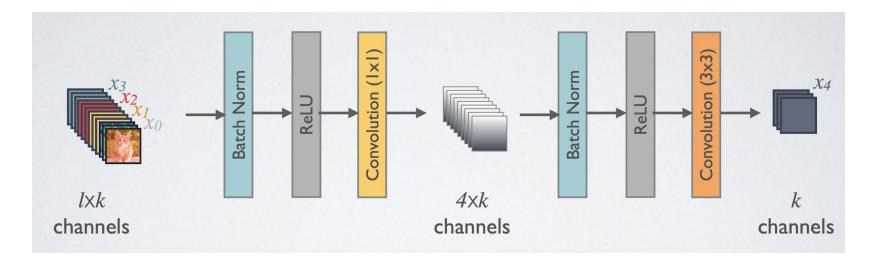
Composite function: [pre-activation]



Post-activation Vs Pre-activation [paper]

Bottleneck layers:

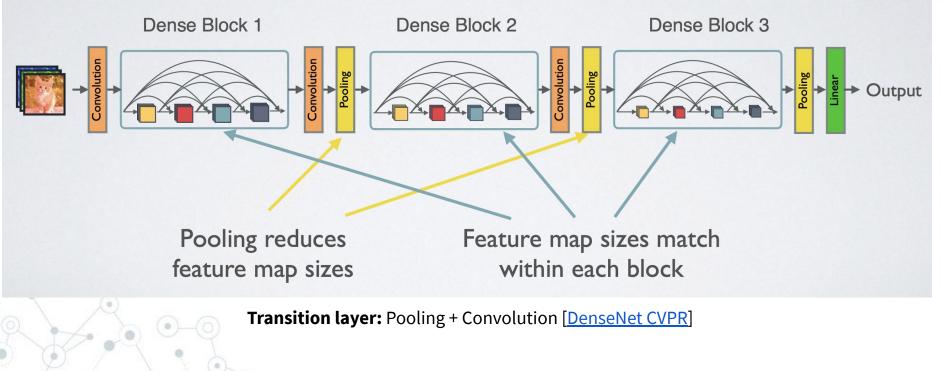
• Aim: To improve computational efficiency



Composite Layer with Bottleneck layer (DenseNet - B)[DenseNet CVPR]

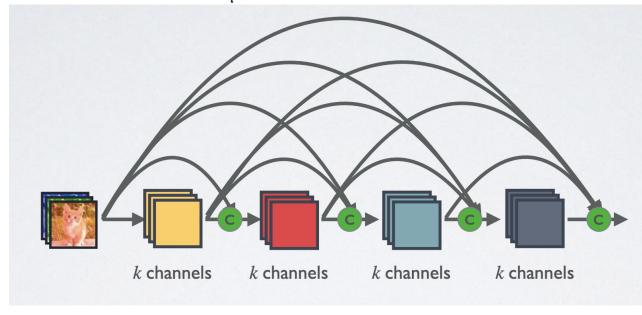
> Pooling layers:

• Aim: Consistent feature-map sizes



> Growth rate (k):

• Each function H_1 produces k feature maps.



Dense & Slim: "Collective Knowledge"[DenseNet CVPR]

Compression:

- Aim: Compactness → Reduce #feature-maps (m) at transition layer.
- θ : compression factor ($0 < \theta \le 1$)
- Referred to as *DenseNet C*.

Architecture Details

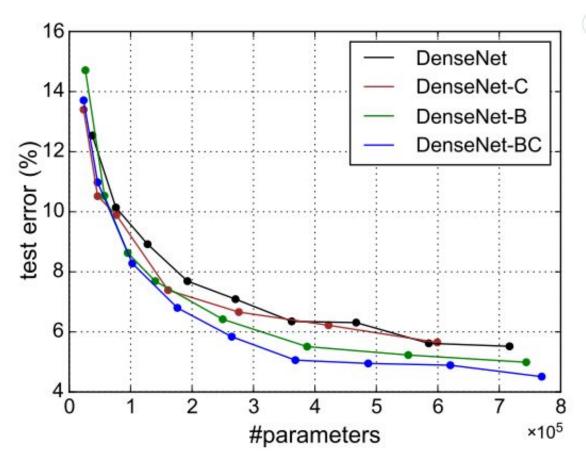
Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264							
Convolution	112×112	7×7 conv, stride 2										
Pooling	56×56	3×3 max pool, stride 2										
Dense Block (1)	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	× 6						
Transition Layer (1)	56 × 56	$1 \times 1 \text{ conv}$										
	28×28	2×2 average pool, stride 2										
Dense Block (2)	28×28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	×12						
Transition Layer (2)	28×28	$1 \times 1 \text{ conv}$										
	14×14	2×2 average pool, stride 2										
Dense Block (3)	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	× 64						
Transition Layer (3)	14×14	$1 \times 1 \text{ conv}$										
	7×7	2×2 average pool, stride 2										
Dense Block (4)	7 × 7	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix}$	$\times 48$						
Classification Layer	1×1	7×7 global average pool										
		1000D fully-connected, softmax										

DenseNet architecture for ImageNet. Growth rate (*k* = 32). Each "conv" layer shown corresponds to BN-ReLU-Conv [DenseNet Paper]

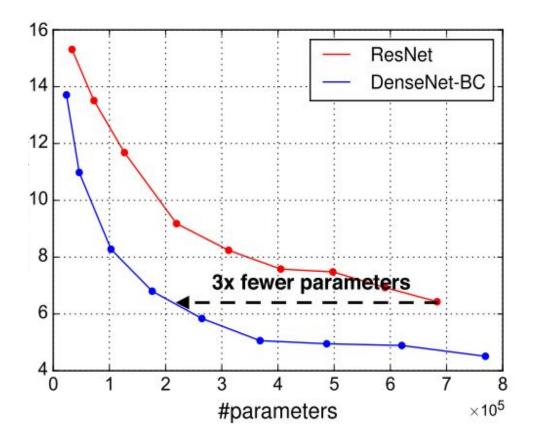
Experiments

- Datasets:
 - CIFAR
 - SVHN (Street View House Numbers)
 - ImageNet
- > Trained using SGD (Stochastic Gradient Descent)
- > Three-step learning rate decay by 10%

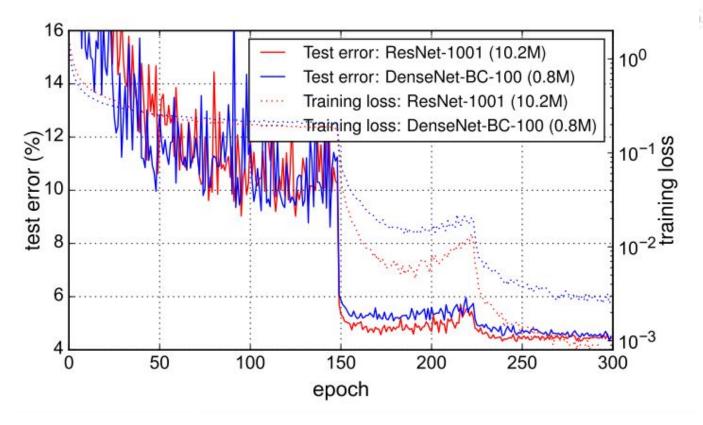
Weight decay of 0.0001 and momentum of 0.9



Comparison of the parameter efficiency on C10+ between DenseNet variations [DenseNet paper]



Comparison of the parameter efficiency between DenseNet-BC and (pre-activation) ResNets [DenseNet paper]



Training and testing curves of ResNet and DenseNet [DenseNet paper]

Method	Depth	Params	C10	C10+	C100	C100+	SVHN
Network in Network [22]	-	-	10.41	8.81	35.68	-	2.35
All-CNN [32]	-	-	9.08	7.25	-	33.71	-
Deeply Supervised Net [20]	-	-	9.69	7.97	-	34.57	1.92
Highway Network [34]	-	-	-	7.72	-	32.39	-
FractalNet [17]	21	38.6M	10.18	5.22	35.34	23.30	2.01
with Dropout/Drop-path	21	38.6M	7.33	4.60	28.20	23.73	1.87
ResNet [11]	110	1.7M	-	6.61	-	-	-
ResNet (reported by [13])	110	1.7M	13.63	6.41	44.74	27.22	2.01
ResNet with Stochastic Depth [13]	110	1.7M	11.66	5.23	37.80	24.58	1.75
	1202	10.2M	-	4.91	-	-	-
Wide ResNet [42]	16	11.0M		4.81	-	22.07	-
	28	36.5M	-	4.17	-	20.50	-
with Dropout	16	2.7M	-	÷	-	-	1.64
ResNet (pre-activation) [12]	164	1.7M	11.26*	5.46	35.58*	24.33	-
	1001	10.2M	10.56*	4.62	33.47*	22.71	-
DenseNet $(k = 12)$	40	1.0M	7.00	5.24	27.55	24.42	1.79
DenseNet $(k = 12)$	100	7.0M	5.77	4.10	23.79	20.20	1.67
DenseNet $(k = 24)$	100	27.2M	5.83	3.74	23.42	19.25	1.59
DenseNet-BC $(k = 12)$	100	0.8M	5.92	4.51	24.15	22.27	1.76
DenseNet-BC $(k = 24)$	250	15.3M	5.19	3.62	19.64	17.60	1.74
DenseNet-BC $(k = 40)$	190	25.6M	-	3.46	-	17.18	-

Error rates of different models on CIFAR and SVHN datasets with other details [DenseNet paper]

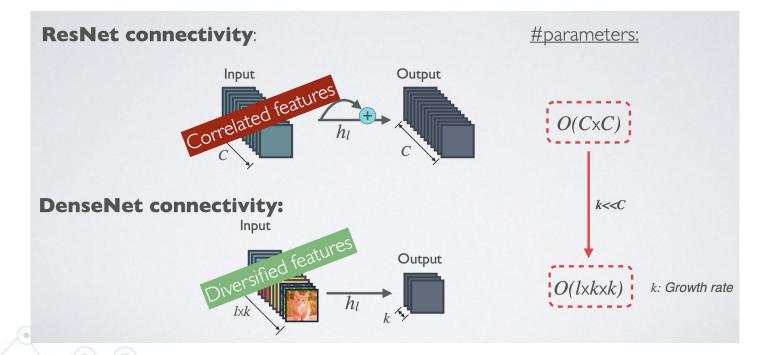
Advantages

Strong Gradient Flow



Implicit "Deep Supervision" [DenseNet CVPR]

Parameter and computational efficiency; diversified features

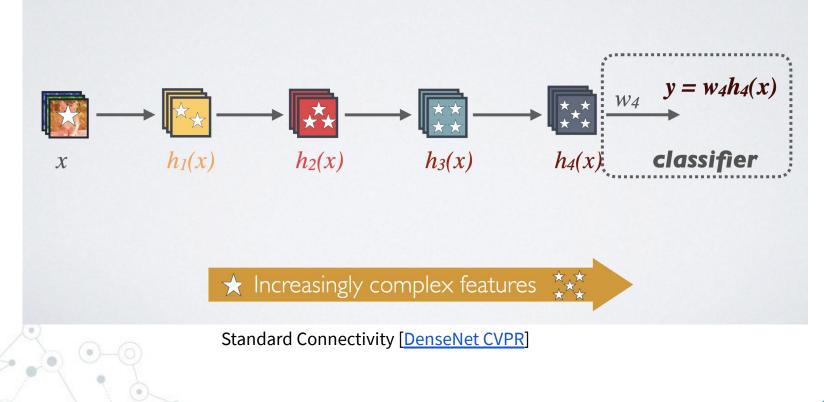


Parameters comparison in ResNet Vs DenseNet [DenseNet CVPR]

Advantages

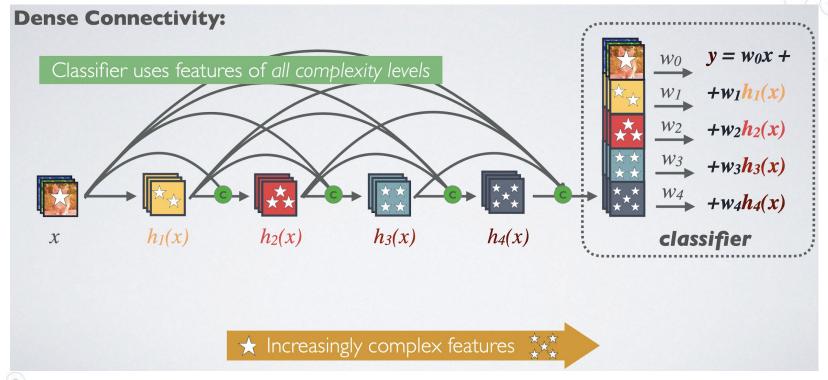
Maintains low complexity features

Classifier uses most complex (high level) features



Advantages

Maintains low complexity features

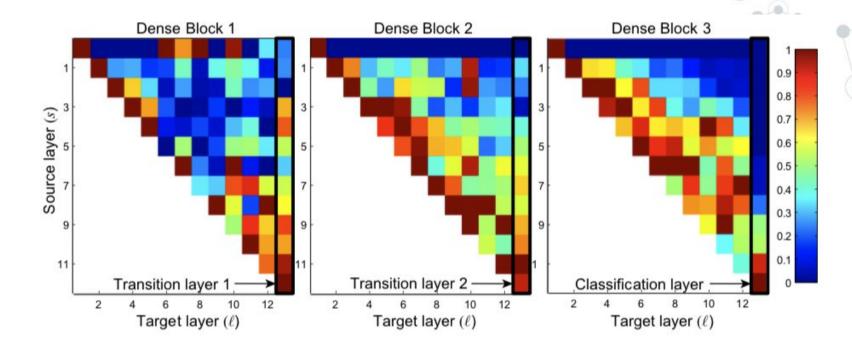


Dense Connectivity [DenseNet CVPR]

Discussion

- Model Compactness
- > Implicit Deep Supervision
- Stochastic Vs Deterministic Connection
- Feature Reuse

Analysis on Feature Reuse



Heat map on the average absolute weights of how Target layer (l) reuses the source layer (s) [DenseNet paper]

Breakout Group Discussion!

Any limitations that you can think of?

Future Work

- Computational and parameter-efficiency can be improved
- SparseNet: A Sparse DenseNet for Image Classification paper addresses this and proposes sparsity as a solution to address this

References

- Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. (2016). Densely Connected Convolutional Networks (cite arxiv:1608.06993Comment: CVPR 2017)
- ➤ He, K., Zhang, X., Ren, S. & Sun, J. (2015). Deep Residual Learning for Image Recognition (cite arxiv:1512.03385Comment: Tech report)
- https://towardsdatascience.com/review-densenet-image -classification-b6631a8ef803
- https://towardsdatascience.com/paper-review-densenet -densely-connected-convolutional-networks-acf9065dfef b

Any questions?

Thank you!

