Big Transfer (BiT): General Visual Representation Learning

A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, N. Houlsby Google Research, Brain Team

- Paper Summary
- □ Transfer Learning

Big Transfer

- UpStream Training
- Downstream Training
- Experiments and Results
- Discussion
- Quiz questions

Paper Summary

- □ Scale Up Pre-Training
 - □ Train ResNet152x4 on JFT 300M dataset.
 - □ Shows how to train models at such scale.
- □ Fine Tune this model to different tasks (20)
 - **Cheap fine-tuning**
 - Only few hyper-params need to be tuned.
- □ Fine Tuned models perform very well.

Transfer Learning

Transfer Learning

Classical Learning

Why Transfer Learning?

Scarcity of Labelled Data

- Training Models for every task is expensive and time consuming
- There is redundant work in training

Train Just one model.

Fine tuning it to other tasks take less data and less compute.

Promotes Reuse.

Big Transfer (BiT)

BiT Components (Ingredients)

UpStream Components

- Large Scale Dataset and Model
- **Group Normalization**
- Weight Standardization

DownStream Components

- Task Specific Dataset
- Fine-Tuning Protocol
- Bit-HyperRule

Upstream Training

Data for Upstream Training

Model	Data Set	Remarks		
BiT-S	ILSVRC-2012 variant of ImageNet	1.28M images, 1000 classes, 1 label/image		
BiT-M	ImageNet-21k	14.2M images, 21k classes		
BiT-L	JFT-300M	300M images, 1.26 labels/image, 18291 classes, 20% noisy labels due to automatic annotations		

Normalization

- □ Normalize activations along subset of (N,C,H,W) dimensions.
- **G** Faster and stable training of NNs
- □ Makes Loss function smooth and hence optimization is easier.

Group Normalization

- Normalize over groups of channels. Not all channels are equally important.
- Layer Normalization and Instance Normalization are special cases of GN.
- More effective then BN when batch size is very small. But BN is better with bigger batch sizes

Weight Standardization

- Normalizes weights instead of activations.
- Helps in smoothing the loss landscape.
- Works well in conjunction with GN in low batch size regime.

Summary of Upstream Training

Model		Data Parallel Training		Optimization		
	ResNet 152 x4		Global BS = 4096		SGD with Momentum	
	Each hidden laver		Train on TPUv3-512		(0.9), weight Decay(1e-4)	
	widened by x4		8 ima/chip		LR=0.03 and reduce by factor of 10 after 10.	
	928 Million params		Use GN + WS		23,30, 37 epochs. (BiT-L)	
	Same model for all datasets				Train for 40 epochs	
					Linear LR warmup for first	

5K opt. Steps

DownStream Training

DownStream Components

Goal : Cheap fine-tuning								
	BiT-HyperRule	Data Processing		Optimization				
	Most Hyper-Params need not be changed. Depending on dataset size and image resolution set the following, Image Resolute Length Image Resolution MixUp Regularization Small (~ 20K), Medium (~500K), Large(> 500K)		Random Crops and Horizontal Flips (all tasks) Smaller than 96x96 => 160x160 => random crop 128x128 Larger, => 448x448 => random crop 384x384		SGD with Momentum (0.9), weight Decay(1e-4) LR=0.003 and reduce by factor of 10 in later epochs Epochs: Small: 500 Medium: 10K Large: 20K			

MixUp Regularization

Introduce new samples which are convex combination of existing samples.

- Improves Generalization
- Reduces memorization of corrupt labels.
- Increases Robustness to adversarial examples.
- Used mixup with alpha=0.1 for large and medium tasks.
- 1. <u>https://towardsdatascience.com/2-reasons-to-use-mixup-when-training-yor-deep-learning-models-58728f15c559</u>
- 2. https://arxiv.org/pdf/1710.09412.pdf

Experiments

Downstream Tasks

Benchmarks

- ILSVRC-2012
- CIFAR 10/100
- Oxford-IIIT Pet
- Oxford Flowers-102

Datasets differ in

- Total number of images
- Input resolution
- Nature of categories
 - ImageNet and CIFAR (general)
 - Pets and Flowers (fine-grained)

Results reporting

- BiT fine-tuned on official training split
- Report results on official test split if available else use validation split

Further assessment

- VTAB benchmark
- To assess generality of representations learned by BiT
- 19 tasks, 1000 training samples each
- Three groups of tasks natural, special, structured

Hyperparameter Details

Upstream Pre-Training	Downstream Fine-Tuning
 ResNetv2 architecture, each hidden layer widened by factor of 4 (ResNet152x4) BN layers replaced by GN, WS in all conv layers SGD with momentum(0.9) Initial LR - 0.03 - decayed in all 3 models by factor of 10 in later epochs Batch size - 4096, Linear learning rate warmup for 5000 steps, weight decay of 0.0001 	 BiT - HyperRule Resolution - 96x96 160x160 - then random 128x128 crop, Larger images resize to 448x448 then 384x384 crop Schedule - Small - <20k ex, tune 500 steps, Medium - <500k ex, tune 10k steps Large - tune for 20k steps MixUp - α = 0.1, for medium and large tasks

Top-1 accuracy for BiT-L

	$\operatorname{BiT-L}$	Generalist SOTA	Specialist SOTA
ILSVRC-2012	$\textbf{87.54} \pm \textbf{0.02}$	86.4 [57]	88.4 [61]*
CIFAR-10	99.37 ± 0.06	99.0 [<mark>19</mark>]	-
CIFAR-100	93.51 ± 0.08	91.7 [55]	-
Pets	96.62 ± 0.23	$95.9 \ [19]$	97.1 [38]
Flowers	99.63 ± 0.03	98.8 [55]	97.7 [38]
VTAB (19 tasks)	$\textbf{76.29} \pm \textbf{1.70}$	70.5 [58]	-

The entries show median ± standard deviation across 3 fine-tuning runs.

Accuracy improvement with ImageNet-21k

	ILSVRC- 2012	CIFAR- 10	CIFAR- 100	Pets	Flowers	VTAB-1k (19 tasks)
BiT-S (ILSVRC-2012) BiT-M (ImageNet-21k)	81.30 85.39	97.51 98.91	86.21 92.17	93.97 94.46	89.89 99.30	66.87 70.64
Improvement	+4.09	+1.40	+5.96	+0.49	+9.41	+3.77

Top-1 accuracy is reported above. Both models are ResNet152x4

Few-Shot Learning

ILSVRC-2012 - Top-1 accuracy of 72% with 5 samples/class, 84.1% with 100 samples/class CIFAR-100 - Top-1 accuracy of 82.6% with just 10 samples per class.

Results on VTAB

VTAB (19 tasks) with 1000 examples/task, and the current SOTA.

ObjectNet & Object Detection

Model	Upstream data	AP
RetinaNet [33]	ILSVRC-2012	40.8
RetinaNet (BiT-S)	ILSVRC-2012	41.7
RetinaNet (BiT-M)	ImageNet-21k	43.2
RetinaNet (BiT-L)	JFT-300M	43.8

Scaling Models and Datasets

Scaling Models and Datasets

Optimization for large datasets

Table 4: Top-1 accuracy of ResNet-50
trained from scratch on ILSVRC-2012
with a batch-size of 4096.

Table 5: Transfer performance of the corresponding models from Table 4 fine-tuned to the 19 VTAB-1k tasks.

	Plain Conv	Weight Std.		Plain Conv	Weight Std.
Batch Norm.	75.6	75.8	Batch Norm.	67.72	66.78
Group Norm.	70.2	76.0	Group Norm.	68.77	70.39

Criticism and Future work

- Upstream Training is expensive, requires lot of resources (GPU etc.)
- □ These models may be poisonous or may contain backdoors ?

Thank you!

Discussion

Question 1

1. The authors find Batch Normalization to be detrimental for Big Transfer. Which other techniques are suggested instead for upstream pre-training?

- a. Group Normalization
- b. Weight Standardization
- c. Dropout
- d. MixUp regularization

Answers :

- a. Group Normalization
- b. Weight Standardization

Question 2

2. Which of the following statements are true?

- a. BiT uses extra unlabelled in-domain data.
- b. Lower weight decay results in a highly performant final model.
- c. BiT has 928 million parameters.
- d. Decaying learning rate too early leads to sub-optimal model.

Answers :

- c. BiT has 928 million parameters.
- d. Decaying learning rate too early leads to sub-optimal model.

Question 3

3.

Statement I : The authors perform random horizontal flipping or cropping of training images during fine tuning, irrespective of the type of downstream task.

Statement II : For fine-tuning BiT-L needs more samples per class.

- a. Statement I is false, Statement II is true
- b. Statement I is true, Statement II is false
- c. Both Statement I and II are true
- d. Both Statement I and II are false

Answers :

a. Both Statement I and II are false