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Introduction

* We are introducing unsupervised data augmentation (UDA), an
augmentation method that focus on the quality of injected noise,
which delivers substantial improvements in unsupervised training
results.

* UDA substitutes simple noising operation (such as simple Gaussian or
dropout noise) with advanced data augmentation methods (such as
RandAugment and back-translation).

* UDA performs better on six classification tasks:

» Text classification: IMDDb, Yelp-2, Yelp-5, Amazon-2, Amazon-5
* Image classification: CIFAR-10, SVHN



Background

* Semi-supervised learning has shown promising improvements in deep
learning models when labeled data is scarce.

« Common recent approaches involves using of consistent training on
large amount of unlabeled data to constraint model predictions to be
invariant to input noise.
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Consistency Training

* Consistency training regularizes model predictions to be invariant to
small noises to either input examples or hidden states. (This make the
model robust to any small changes)

* Most methods under this framework differs in how and where the
noise injection is applied.

* Advanced data augmentation methods used in supervised learning
also perform well in semi-supervised learning. (Strong correlation

present)



Supervised Data Augmentation

* et g(x | x) be the augmentation transformation from which one can
draw augmented examples X based on an original example x. It is
required that any example X ~ q(x | x) drawn from the distribution
shares the same ground-truth label as x.

* Equivalent to constructing an augmented labeled set from the original
supervised set and then training the model on the augmented set.
(The augmented set needs to provide additional inductive biases to
be more effective).

* Despite promising results, data augmentation only provides a steady
but limited performance boost because these augmentations has only
been applied to a set of small-size labeled examples. This limitation
motivated semi-supervised learning where abundant data is available.



Unsupervised Data Augmentation (UDA)

e Given an input x, compute the output distribution py(y | ) given = and a noised version py(y |
x, €) by injecting a small noise €. The noise can be applied to = or hidden states.

e Minimize a divergence metric between the two distributions D (pg(y | z) || pe(y | x,€)).

* This procedure enforces the model to be insensitive to the noise. This
is essentially minimizing the consistency loss gradually propagates
label information from labeled examples to unlabeled ones.

 The UDA presented in this paper focus on the ‘quality’ of the noise
operation and its influence on performance of consistency training
network. The mechanism is explained in the following slide.



The UDA Mechanism

 Utilize a weighting factor A when trained with labeled examples. This
is used to balance the supervised cross entropy and the unsupervised
consistency training loss. As shown in the expression below:

min J(0) = Bonp,(a) [~ 1080 (f*(2) | 2)] + AEanpy (2)Esng(al) [CE (P5(y | 2)llpo(y | 2))]
* CE: cross entropy

e g(X | x): a data augmentation transformation

0 is a fixed copy of current parameter 0 indicating gradient is not propagated through 8
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Advantage of advanced data augmentation

* Valid noise: Advanced data augmentation methods generates realistic
augmented examples that share the same ground-truth labels with
the original example.

* Diverse noise: Advanced data augmentation can generate a diverse
set of examples since it can make large modifications of the input
example without changing its label.

* Targeted inductive biases: Data augmentation operations that work

well in supervised training essentially provides the missing inductive
biases.



Augmentation Strategies — Image Classification

 RandAugment is used for image data augmentation.

* Instead of searching, RandAugment sample uniformly from the
Python Image Library (PIL).

* This makes RandAugment simpler and requires no labeled data as
there is no need to search for optimal policies.

RandAugment




Augmentation Strategies- Text Classification

e Back-Translation is used for text classification.

* The procedure is translating an existing example x in language A into
another language B and then translating it back into A to obtain an
augmented example X.

* Back-translation can generate diverse paraphrases while preserving
the semantics of the original sentence, which improves performance.

* A random sampling with a tunable temperature is used for the
generation.



Augmentation Strategies- Text Classification

Since it was highly limited in terms of
budget, and the production restrictions, the
film was cheerful.

[Given the low budget and \ Back-translation [ There are few budget items and production j

production limitations, this movie limitations to make this film a really good
is very good. J one.

Due to the small dollar amount and

production limitations the ouest film is very
beautiful.




Word replacing with TF-IDF for text
classification

* Simple back-translation has little control over which words will be
retained, but this requirement is important for topic classification
tasks (some key words are more informative than others).

* To address this problem, UDA replaces uniformative words with low
TF-IDF scores while keeping those with high TF-IDF values.



Additional Training Techniques- Confidence
based masking

* Examples that the current model is not confident about is masked.

 This is done by controlling the calculation of consistency loss in each
minibatch.

* Specifically, consistency loss is computed only on examples whose
highest probability among classification categories is greater than a

threshold f3.

* This threshold B is set to a high value to avoid calculating unsure
models.



Additional Training Techniques- Sharpening
Predictions

* Regularizing predictions to have low entropy is beneficial, thus
prediction sharpening is done when computing the target distribution
on unlabeled examples by using low temperature 7.

* Loss on unlabeled examples Eovpy@Ei~q) [CE (5w | 2)Ipe(y | 2))] is computed as:

1 shar A
7 X Ly | 2)> B)CE (" (v | 2) Iy | 2)
xeB

shar CXP\2y/T
p(~h p)(ylm)— (y/)

0 2, exp(zy /)

I(+) is the indicator function, Z, is the logit of label y for example x



Additional Training Techniques- Domain
Relevance Data Filtering

e Class distributions of out-of-domain data are mismatched with those

of in-domain data, so simply use out-of domain unlabeled data is not
sufficient.

* To obtain data relevant to the domain for task at hand, the baseline
model trained on the in-domain data is used to infer the labels of

data in a large out-of-domain dataset and the examples our model is
most confident are picked out.

* This is essentially sorting all examples based on classified probability
(for each category) and select the examples with the highest
probabilities of being in that category.



Theoretical Analysis - Assumptions

Notations:

* py: distribution of unlabeled data
* p;: distribution of labeled data

* f*: optimal classifier

* g(X|x): augmentation distribution



Theoretical Analysis- Assumptions

* In-domain augmentation: data examples generated by data
augmentation have non-zero probability under py, i.e., py (X) >
0 for Xx~q(X|x), x~py (x)

* Label-preserving augmentation: data augmentation preserves
the label of the original example, i.e., f*(x) = f*(X) for
X~q(X[x), x~py(x)

* Reversible augmentation: the data augmentation operation can
be reversed, i.e., g(X|x) > 0 < g(x|x) >0



Theoretical Analysis- Intuition

* For a graph G, ,, where each node corresponds to a data
sample x € X and an edge (X, x) exists iff g(X]|x) > 0

* For an N-category classification problem, by an ideal data
augmentation method, G, , should have N components

* For each component C; of the graph, as long as we have one
labeled data, by traversing C; via augmentation operation
q(X|x), we can propagate the label over all data in C;



Theoretical Analysis- Intuition

* In order to find a perfect classifier via such label propagation,
there should exist at least one labeled example in each
component.

 Which means the number of components is the lower bound
the minimum amount of labeled examples needed.

* With a better augmentation method, the number of
components can be decreased.



Theoretical Analysis - Theorem

P;: the total probability that a labeled data point fall into the i-th
components, i.e., P; = Yy, Pp(x)

Theorem 1. Under UDA, let Pr(.A) denote the probability that the algorithm cannot infer the label
of a new test example given m labeled examples from Py. Pr(A) is given by

Pr(A) =) P(1-P)"

In addition, O(k/¢€) labeled examples can guarantee an error rate of O(€), i.e.,

m=0(k/e) = Pr(A) = 0(e).



Experiments

Step 1: Correlation between supervised and semi-supervised performance

Augmentation Sup  Semi-Sup Augmentation Sup Semi-sup
(# Sup examples) | (50k) (4Kk) (# Sup examples) | (650k) (2.5k)
Crop & flip 5.36 10.94 X 38.36 50.80
Cutout 4.42 5.43 Switchout 37.24 43.38
RandAugment 4.23 4.32 Back-translation 36.71 41.35

Table 1: Error rates on CIFAR-10. Table 2: Error rate on Yelp-3.



Experiments

Step 2: Vision semi-supervised learning benchmarks — Vary the size
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Experiments

Step 2: Vision semi-supervised learning benchmarks — Vary the model

Method | Model # Param | CIFAR-10 (4k) SVHN (1k)
[I-Model (Laine & Aila, 2016) Conv-Large 3.1M 12.36 £+ 0.31 4.82 +0.17
Mean Teacher (Tarvainen & Valpola, 2017) | Conv-Large 3.1IM 12.31 £0.28  3.95 +£0.19
VAT + EntMin (Miyato et al., 2018) Conv-Large 3.1IM 10.55 £ 0.05 3.86 £0.11
SNTG (Luo et al., 2018) Conv-Large 3.1M 10.93 £ 0.14 3.86 + 0.27
VAdD (Park et al., 2018) Conv-Large 3.1M 11.32 +0.11 4.16 4+ 0.08
Fast-SWA (Athiwaratkun et al., 2018) Conv-Large 3.1M 9.05 -
ICT (Verma et al., 2019) Conv-Large 3.1M 7.29 +0.02 3.89 +0.04
Pseudo-Label (Lee, 2013) WRN-28-2 1.5M 16.21 + 0.11 7.62 £+ 0.29
LGA + VAT (Jackson & Schulman, 2019) WRN-28-2 1.5M 12.06 + 0.19 6.58 £+ 0.36
mixmixup (Hataya & Nakayama, 2019) WRN-28-2 1.5M 10 -
ICT (Verma et al., 2019) WRN-28-2 1.5M 7.66 £+ 0.17 3.53 £ 0.07
MixMatch (Berthelot et al., 2019) WRN-28-2 1.5M 6.24 + 0.06 2.89 + 0.06
Mean Teacher (Tarvainen & Valpola, 2017) | Shake-Shake 26M 6.28 + 0.15 -
Fast-SWA (Athiwaratkun et al., 2018) Shake-Shake 26M 5.0 -
MixMatch (Berthelot et al., 2019) WRN 26M 4.95 £+ 0.08 -
UDA (RandAugment) WRN-28-2 1.5M 4.32 + 0.08 2.23 + 0.07
UDA (RandAugment) Shake-Shake 26M 3.7 -
UDA (RandAugment) PyramidNet 26M 2.7 -




Experiments

Step 3: Text semi-supervised classification tasks

Fully supervised baseline

Datasets IMDb Ye18—2 Ye18-5 Amazon-2 Amazon-5 DBpedia
(# Sup examples) (25k)  (560k)  (650k) (3.6m) (3m) (560k)
Pre-BERT SOTA 4.32 2.16 29.98 3.32 34.81 0.70
BERT ArRGE 4.51 1.89 29.32 2.63 34.17 0.64
Semi-supervised setting
ce te e IMDb  Yelp-2 Yelp-5 Amazon-2 Amazon-5 DBpedia
Initialization ~ UDA | "55° 55 (35 (20) (2.5K) (140)
X 43.27 40.25 50.80 45.39 55.70 41.14
Random v 2523 833 4135 16.16 44.19 7.24
BERT X 18.40 13.60 41.00 26.75 44.09 2.58
BASE ve 5.45 2.61 33.80 3.96 38.40 1.33
BERT X 11.72 10.55 38.90 15.54 42.30 1.68
LARGE v 4.78 2.50 33.54 3.93 37.80 1.09
BERT X 6.50 2.94 32.39 12.17 37.32 -
FINETUNE v 4.20 2.05 32.08 3.50 37.12 -




Experiments

Step 4: Scalability test on the ImageNet dataset

l.  Use 10% of the supervised data of ImageNet while using all other data
as unlabeled data.

Il. Use all images in ImageNet as supervised data, use data filtered by
domain-relevance data filtering method as unlabeled data.

Methods SSL 10% 100%

ResNet-50 X 55.09/7726 77.28/93.73
w. RandAugment 58.84/80.56  78.43/94.37
UDA (RandAugment) v 68.78/88.80 79.05/94.49




Conclusion

e Data augmentation and semi-supervised learning are well connected,
better data augmentation can lead to significantly better semi-
supervised learning.

* UDA generate diverse and realistic noise and enforces the model to
be consistent with respect to these noises.

 UDA combines well with representation learning and nearly matches
the performance of fully supervised models trained on full labeled

sets which are larger by one magnitude in size.



