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Intriguing properties of Neural Networks

2Szegedy et 
al, 2014

• Deep Neural Networks are highly expressive; reason they 
succeed but also why they produce uninterpretable 
solutions with counter-intuitive properties.

• Any linear combination of activations of a layer stores 
feature information invariantly. It is the space rather than 
individual units of neural networks that contains the 
semantic information.

• Input-output mapping in NN is not perfect. Imperceptible 
perturbations can cause a model to misclassify.



Bad news: machine learning is not robust

3



Common adversarial attacks
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Two broad types: 

1) Black box
2) White box (our focus)



Common adversarial attacks

5Goodfellow, 
2015

The Fast Gradient Sign Method (FGSM) attack

Error rate Confidence ε

MNIST 
(softmax)

99.9% 79.3% 0.25

MNIST 
(maxout)

89.4% 97.6% 0.25

CIFAR-10 
(maxout)

87.15% 96.6% 0.1



Common adversarial attacks

6Tsiparas et 
al, 2019

The Projected Gradient Descent (PGD) attack

• Very strong first order attack.
• Iterative.
• Finds perturbations in 𝑙! and 𝑙" balls.
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Robust Physical-World Attacks

8Eykholt et 
al, 2019

• Robust Physical Perturbation (RP2)

• Targeted misclassification on real-world example of traffic 
stop sign.

• Generates robust perturbations that achieve high 
misclassification rates under various environmental 
conditions, including viewpoints.



Robust Physical-World Attacks

9Eykholt et 
al, 2019
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Robust Defense

Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search

Dubey et al, 
2019
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Robust Defense

Method

• “Off-manifold” adversarial images.

• Approximate the projection of an adversarial example 
onto the image manifold by the finding nearest neighbors 
in the image database.

• Classify the “projection” of the adversarial example.
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Robust Defense



General Robustness Problem
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Training distribution ≠ Test distribution 

• Robust Statistics: Hard train & Normal test

• Robust Optimization: Normal train & Hard test



Dilemma
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Our goal: robust (test) accuracy (test; adversarial examples)
Direct instinct: optimize robust (training) accuracy (training; 
adversarial training)  
Problem: standard accuracy is affected 

Training Standard 
Accuracy

Robust 
Accuracy

Standard 
Training

95.2% 0%

Adversarial 
Training
(Modry et al. 2018)

87.3% 45.8%

TRADES
(Zhang et al. 2019)

84.8% 55.4%

Results on CIFAR 10

There is a tradeoff between 
standard accuracy and 
robust accuracy



Key Questions
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1. Why is there a tradeoff ?

2. When does it happen? 

3. How to mitigate it? 



Setup Formulation
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Standard accuracy: average over training distribution
P 𝑓 𝑥 ≠ 𝑦

Standard training: find 𝑓 to optimize standard error on the 
training data

Robust error: average over worst-case perturbations
𝑃 ∃)𝑥 ∈ 𝐵 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓 )𝑥 ≠ 𝑦

𝐵 𝑥 = )𝑥 )𝑥 − 𝑥 " ≤ 𝜀}

Robust training: find 𝑓 to optimize robust error on training data



Why can robust training affect standard accuracy?
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1) The optimal accurate predictor is not robust: (Tsipras et al. 2019, 
Zhang et al. 2019, Fawzi et al. 2018)

perturb

Label 0 Label 9

Accurate: Label = 9 Robust: Label = 0

perturb

Label 0 Label 0

Accurate: Label = 0 Robust: Label = 0



Over parametrized 
network can fit data 
perfectly

Why can robust training affect standard accuracy?
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2) Model class is not expressive enough: (Nakkiran et al. 2019)

Well specified problem



Why can robust training affect standard accuracy?
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When things are consistent 𝑓∗ 𝑥 = 𝑓∗( )𝑥), and we have a 
well specified setting , why is there still a tradeoff ? 
• Suggests that tradeoff exists even with infinite data

Gap between standard and robust 
error decreases with more data



Spline Setting
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Spline setting: consider a well-specified model (no 
approximation issues), and convex (no optimization issues)
Surprisingly: tradeoff still exists

Extra data commanded local fit at the expense of 
global fit



General Linear Setting
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Simple linear model: 𝑦 = 𝑥$𝜃∗

Standard data: 𝑋%&', y()* = X()*θ∗

Extra data (adversarial data): 𝑋+,&, 𝑦+,& = 𝑋+,&𝜃∗

Analysis of the estimators:
• 𝜃%&' = 𝑎𝑟𝑔𝑚𝑖𝑛-{ 𝜃 !: 𝑋%&'𝜃 = 𝑦%&'}
• 𝜃./0 = 𝑎𝑟𝑔𝑚𝑖𝑛-{ 𝜃 !: 𝑋%&'𝜃 = 𝑦%&', 𝑋+%&𝜃 = 𝑦+,&}

How are these two estimators related, and why 
adding extra points will make error worse. 



Extra data increasing error
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• 𝜃"#$ = 𝑎𝑟𝑔𝑚𝑖𝑛%{ 𝜃 !: 𝑋"#$𝜃 = 𝑦"#$}
• 𝜃&'( = 𝑎𝑟𝑔𝑚𝑖𝑛%{ 𝜃 !: 𝑋"#$𝜃 = 𝑦"#$, 𝑋)"#𝜃 = 𝑦)*#}

Standard test error:
𝐿!"# 𝜃 = 𝜃 − 𝜃∗ %Σ(𝜃 − 𝜃∗)

Σ is  population covariance; governs 
which space is more expensive

If Σ has large weight on direction of 𝑒&
Then errors on 𝑒& are expensive

Augmented estimator 𝜃./0 has 
much higher standard error



Extra data increasing error

𝐿%&' 𝜃%&' − 𝐿%&' 𝜃./0 = 𝑣$Σ𝑣 + 2𝑤$Σ𝑣

𝑣 = Π%&'4 Π./0𝜃∗ 𝑎𝑛𝑑 𝑤 = Π./04 𝜃∗

Always Positive term (PSD): decrease in standard error of 𝜃)*+ by fitting extra data 
in some direction                   BENEFIT

Can be negative: measures the cost of a possible increase in parameter error along a 
certain direction (like 𝑒! previously)                   COST

Cost > Benefit : standard error of 𝜃)*+ is higher

No tradeoff scenario:
• 𝑤 = Π)*+, 𝜃∗ = 0

• Perfect Augmentation on entire space
• Σ = I

• No direction is more costly than the other (augmentation is always 
beneficial)



How Can We Mitigate the Tradeoff ?
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Our Intentions:
• Keep 𝜃!"# the same
• Find a robust estimator for 𝑋'("

𝑚𝑖𝑛𝔼( 𝑥%𝜃 − 𝑥%𝜃!"# & 𝑠. 𝑡.
𝑋!"#𝜃 = 𝑦!"#
𝑋'("𝜃 = 𝑦'("

𝑚𝑖𝑛 𝜃 − 𝜃!"# % 𝛴(𝜃 − 𝜃!"#)
Note how 𝛴 is included in the 
formulation

Robust Self Training

• You train your 
estimator 𝑥-𝜃 to have 
predictions close to the 
pseudo-labels 𝑥-𝜃#$%

• And still interpolating 
the available data 



Robust Self Training
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Labeled Data
Standard Training

𝜃!"#
Accurate 
Classifier

Use 𝜃!"# to 
pseudo-label

unlabeled data 
(𝑥$𝜃!"#)

Pool the Labeled Data 
+ Pseudo-labeled Data Robust Training Robust and Accurate 

Classifier

[Carmon et al. 2019]

Standard Robust (𝑿𝒆𝒙𝒕 or 𝑿𝒂𝒅𝒗)

Labeled Data Input 𝑥 and label 𝑦 Input 𝑥'($ and label 𝑦
Unlabeled Data Input =𝑥 and pseudo-label =𝑦 Input =𝑥'($ and pseudo-label =𝑦'($

𝑚𝑖𝑛𝔼( 𝑥%𝜃 − 𝑥%𝜃!"# & 𝑠. 𝑡.
𝑋!"#𝜃 = 𝑦!"#
𝑋'("𝜃 = 𝑦'("

𝐿!"# 𝜃)!" ≤ 𝐿!"# 𝜃!"#
𝐿)*+ 𝜃)!" ≤ 𝐿)*+(𝜃_𝑎𝑢𝑔)



How Does All This Help ? 
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Revisit our Spline example

We achieved a global structure and a local structure



Take Out Points
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1. Sometimes adding true data to the model can hurt (spline 
example)

2. Unlabeled data when added can in fact help in robustness 
(Robust Self Training)

3. We might think that NN can be very expressive and fit 
anything, but the key problem remains in inductive bias 
and generalization; if done wrong will hurt the model a lot



Question & Discussion
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Quiz Questions
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1) What happens to the gap between standard error of adversarial training and 
standard training when training data increases ? 

a) Stays the same
b) Increases 
c) Decreases

2) What is the approach the authors take in explaining the tradeoff between standard 
and robust error? Tradeoff occurs due to:

a) Hypothesis class is not expressive enough
b) Generalization from finite data 
c) Standard and robust error being fundamentally at odds
d) Robust accuracy being hard to optimize 

3) Which of the following statements is true?
a) When the population covariance Σ is equal to the identity matrix 𝐼, the 

standard error does not increase when fitting augmented data
b) The parameter error does not change with data augmentation
c) Robust Self Training (RST) improves the robust error and hurts 

(increases) the standard error 
d) Augmenting the training data set with perturbed examples will decrease 

the standard error.


