Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, Percy Liang

Presented by:

Wissam Kontar, Abhirav Gholba

Intriguing properties of Neural Networks

- Deep Neural Networks are highly expressive; reason they succeed but also why they produce uninterpretable solutions with counter-intuitive properties.
- Any linear combination of activations of a layer stores feature information invariantly. It is the space rather than individual units of neural networks that contains the semantic information.
- Input-output mapping in NN is not perfect. Imperceptible perturbations can cause a model to misclassify.

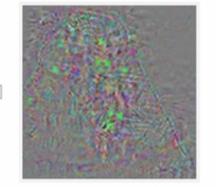
Bad news: machine learning is not robust

Common adversarial attacks

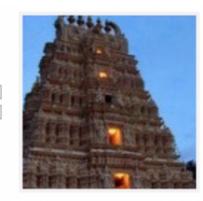
Two broad types:

Black box
White box (our focus)

Original image Temple (97%)



Perturbations



Adversarial example Ostrich (98%)

The Fast Gradient Sign Method (FGSM) attack

$$x + \varepsilon \operatorname{sgn}(\nabla_x L(\theta, x, y)).$$

	Error rate	Confidence	3
MNIST (softmax)	99.9%	79.3%	0.25
MNIST (maxout)	89.4%	97.6%	0.25
CIFAR-10 (maxout)	87.15%	96.6%	0.1

The Projected Gradient Descent (PGD) attack

$$x^{t+1} = \Pi_{x+\mathcal{S}} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right).$$

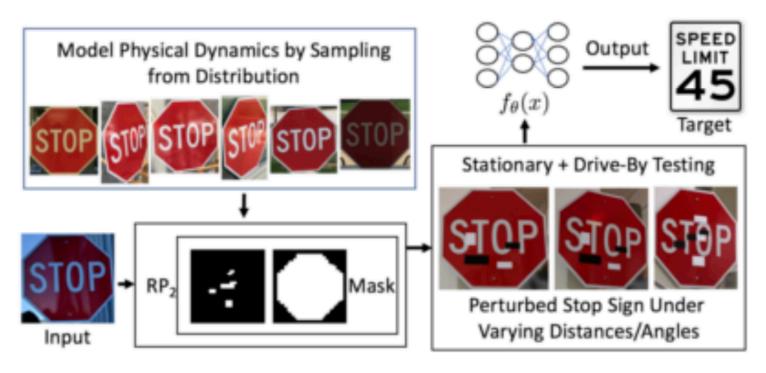
- Very strong first order attack.
- Iterative.
- Finds perturbations in l_2 and l_{∞} balls.

			Standard Accuracy			Robust Accuracy		
	Norm	ε	Standard	Half-half	Robust	Standard	Half-half	Robust
F	ℓ_∞	0	99.31%	-	-	-	-	-
		0.1	99.31%	99.43%	99.36%	29.45%	95.29%	95.05%
		0.2	99.31%	99.22%	98.99%	0.05%	90.79%	92.86%
[IS]		0.3	99.31%	99.17%	97.37%	0.00%	89.51%	89.92%
LSINW		0	99.31%	-	-	-	-	-
	ℓ_2	0.5	99.31%	99.35%	99.41%	94.67%	97.60%	97.70%
		1.5	99.31%	99.29%	99.24%	56.42%	87.71%	88.59%
		2.5	99.31%	99.12%	97.79%	46.36%	60.27%	63.73%
	ℓ_∞	0	92.20%	-	-	_	-	-
		2/255	92.20%	90.13%	89.64%	0.99%	69.10%	69.92%
0		4/255	92.20%	88.27%	86.54%	0.08%	55.60%	57.79%
AR1		8/255	92.20%	84.72%	79.57%	0.00%	37.56%	41.93%
CIFAR10	ℓ_2	0	92.20%	-	-	-	-	-
		20/255	92.20%	92.04%	91.77%	45.60%	83.94%	84.70%
		80/255	92.20%	88.95%	88.38%	8.80%	67.29%	68.69%
		320/255	92.20%	81.74%	75.75%	3.30%	34.45%	39.76%

Robust Physical-World Attacks

- Robust Physical Perturbation (RP₂)
- Targeted misclassification on real-world example of traffic stop sign.
- Generates robust perturbations that achieve high misclassification rates under various environmental conditions, including viewpoints.

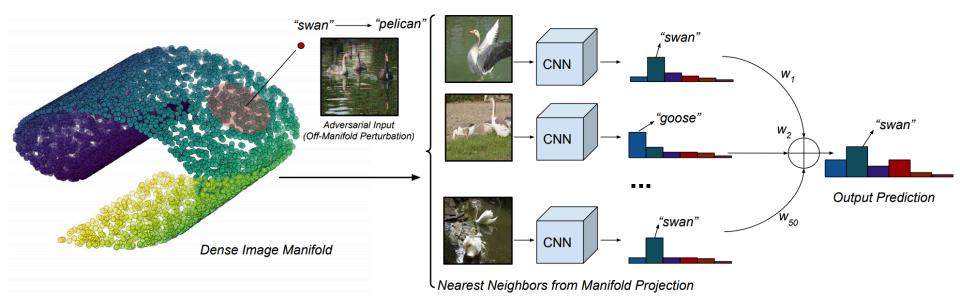
Robust Physical-World Attacks



min $H(x+\delta,x)$, s.t. $f_{\theta}(x+\delta) = y^*$

 $\underset{\delta}{\operatorname{argmin}} \lambda ||\delta||_p + J(f_\theta(x+\delta), y^*) \tag{1}$

Robust Defense



Defense Against Adversarial Images using Web-Scale Nearest-Neighbor Search

Robust Defense

Method

- "Off-manifold" adversarial images.
- Approximate the projection of an adversarial example onto the image manifold by the finding nearest neighbors in the image database.
- Classify the "projection" of the adversarial example.

Robust Defense

Defense	Clean	Gray box	Black box	
No defense	0.761	0.038	0.046	
Crop ensemble [10]	0.652	0.456	0.512	
TV Minimization [10]	0.635	0.338	0.597	
Image quilting [10]	0.414	0.379	0.618	
Ensemble training [35]	-	_	0.051	
ALP [16]	0.557	0.279	0.348	
RA-CNN [39]*	0.609	0.259	_	
Our Results				
IG-50B-All (conv_5_1-RMAC)	0.676	0.427	0.491	
IG-1B-Targeted (conv_5_1)	0.681	0.462	0.587	
YFCC-100M (conv_5_1)	0.613	0.309	0.395	
IN-1.3M (conv_5_1)	0.471	0.286	0.312	

Table 2. ImageNet classification accuracies of ResNet-50 models using state-of-the-art defense strategies against the PGD attack, using a normalized ℓ_2 distance of 0.06. * RA-CNN [39] experiments were performed using a ResNet-18 model.

Training distribution \neq Test distribution

- Robust Statistics: Hard train & Normal test
- Robust Optimization: Normal train & Hard test

Dilemma

Our goal: robust (test) accuracy (test; adversarial examples) Direct instinct: optimize robust (training) accuracy (training; adversarial training) Problem: standard accuracy is affected

Training	Standard Accuracy	Robust Accuracy
Standard Training	95.2%	0%
Adversarial Training (Modry et al. 2018)	87.3%	45.8%
TRADES (Zhang et al. 2019)	84.8%	55.4%

Results on CIFAR 10

There is a tradeoff between standard accuracy and robust accuracy

Key Questions

- 1. Why is there a tradeoff ?
- 2. When does it happen?
- 3. How to mitigate it?

Standard accuracy: average over training distribution $P[f(x) \neq y]$

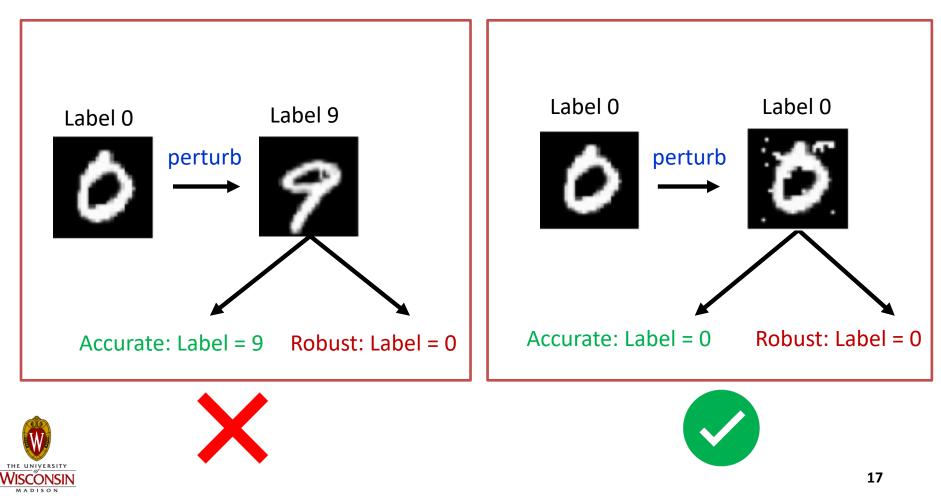
Standard training: find f to optimize standard error on the training data

Robust error: average over worst-case perturbations $P[\exists \tilde{x} \in B(x) \text{ such that } f(\tilde{x}) \neq y]$ $B(x) = \{\tilde{x} \mid ||\tilde{x} - x||_{\infty} \leq \varepsilon\}$

Robust training: find f to optimize robust error on training data

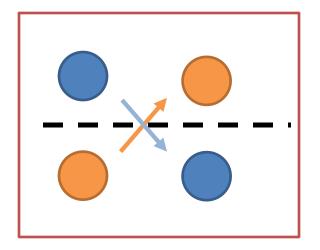
Why can robust training affect standard accuracy?

1) The optimal accurate predictor is not robust: (Tsipras et al. 2019, Zhang et al. 2019, Fawzi et al. 2018)



Why can robust training affect standard accuracy?

2) Model class is not expressive enough: (Nakkiran et al. 2019)



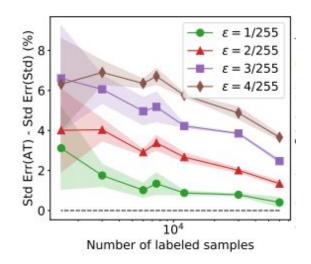
Well specified problem

Over parametrized network can fit data perfectly

Why can robust training affect standard accuracy?

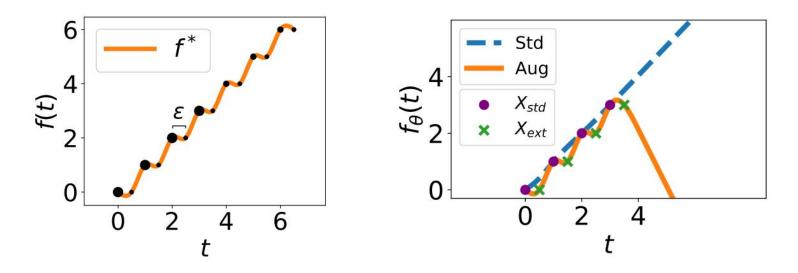
When things are consistent $f^*(x) = f^*(\tilde{x})$, and we have a well specified setting , why is there still a tradeoff ?

• Suggests that tradeoff exists even with infinite data



Gap between standard and robust error decreases with more data

Spline setting: consider a well-specified model (no approximation issues), and convex (no optimization issues) Surprisingly: tradeoff still exists



Extra data commanded local fit at the expense of global fit

Simple linear model: $y = x^T \theta^*$

Standard data: X_{std} , $y_{std} = X_{std}\theta^*$

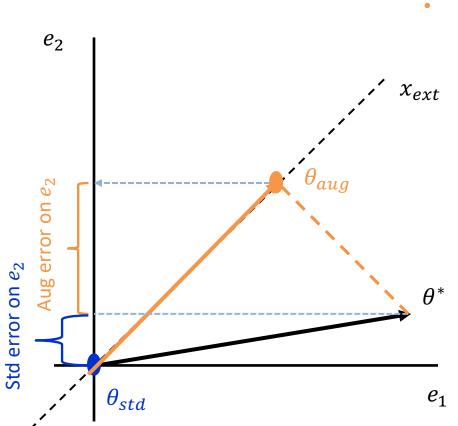
Extra data (adversarial data): X_{ext} , $y_{ext} = X_{ext}\theta^*$

Analysis of the estimators:

- $\theta_{std} = argmin_{\theta} \{ \|\theta\|_2 : X_{std}\theta = y_{std} \}$
- $\theta_{aug} = argmin_{\theta} \{ \|\theta\|_2 : X_{std}\theta = y_{std}, X_{est}\theta = y_{ext} \}$

How are these two estimators related, and why adding extra points will make error worse.

Extra data increasing error



- $\theta_{std} = argmin_{\theta}\{\|\theta\|_{2}: X_{std}\theta = y_{std}\}$
- $\theta_{aug} = argmin_{\theta} \{ \|\theta\|_{2} : X_{std}\theta = y_{std}, X_{est}\theta = y_{ext} \}$

Standard test error: $L_{std}(\theta) = (\theta - \theta^*)^T \Sigma(\theta - \theta^*)$

 $\boldsymbol{\Sigma}$ is population covariance; governs which space is more expensive

If Σ has large weight on direction of e_2 Then errors on e_2 are expensive

Augmented estimator θ_{aug} has much higher standard error

$$L_{std}(\theta_{std}) - L_{std}(\theta_{aug}) = v^T \Sigma v + 2w^T \Sigma v$$

$$v = \prod_{std}^{\perp} \prod_{aug} \theta^* and w = \prod_{aug}^{\perp} \theta^*$$

Always Positive term (PSD): decrease in standard error of θ_{aug} by fitting extra data in some direction **BENEFIT**

Can be negative: measures the cost of a possible increase in parameter error along a certain direction (like e_2 previously) **COST**

Cost > Benefit : standard error of θ_{aug} is higher

No tradeoff scenario:

• $w = \prod_{aug}^{\perp} \theta^* = 0$

• $\Sigma = I$

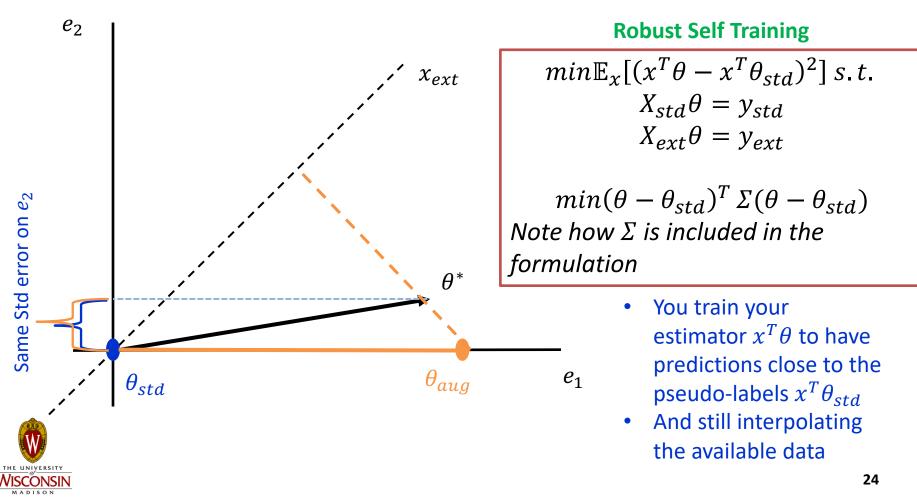
• Perfect Augmentation on entire space

• No direction is more costly than the other (augmentation is always beneficial)

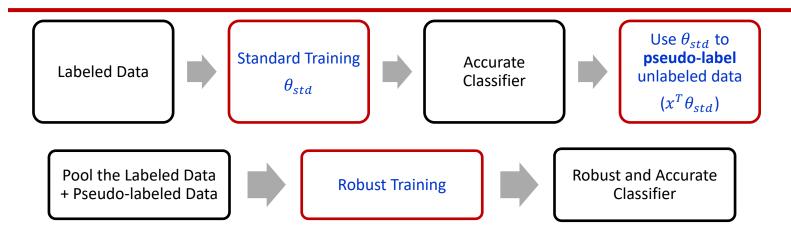
How Can We Mitigate the Tradeoff?

Our Intentions:

- Keep θ_{std} the same
- Find a robust estimator for X_{ext}



Robust Self Training



	Standard	Robust (X_{ext} or X_{adv})
Labeled Data	Input x and label y	Input x_{ext} and label y
Unlabeled Data	Input $ ilde{x}$ and pseudo-label $ ilde{y}$	Input \tilde{x}_{ext} and pseudo-label \tilde{y}_{ext}

$$min\mathbb{E}_{x}[(x^{T}\theta - x^{T}\theta_{std})^{2}] s.t.$$
$$X_{std}\theta = y_{std}$$
$$X_{ext}\theta = y_{ext}$$

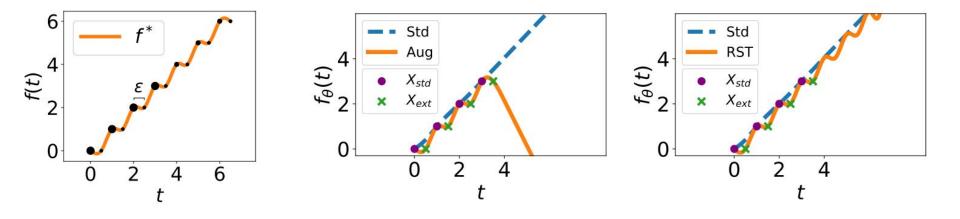
[Carmon et al. 2019]

 $L_{std}(\theta_{rst}) \leq L_{std}(\theta_{std})$

 $L_{rob}(\theta_{rst}) \leq L_{rob}(\theta_{aug})$

How Does All This Help ?

Revisit our Spline example



We achieved a global structure and a local structure

- 1. Sometimes adding true data to the model can hurt (spline example)
- Unlabeled data when added can in fact help in robustness (Robust Self Training)
- 3. We might think that NN can be very expressive and fit anything, but the key problem remains in inductive bias and generalization; if done wrong will hurt the model a lot

Question & Discussion

Quiz Questions

- 1) What happens to the gap between standard error of adversarial training and standard training when training data increases ?
 - a) Stays the same
 - b) Increases
 - c) Decreases

2) What is the approach the authors take in explaining the tradeoff between standard and robust error? Tradeoff occurs due to:

- a) Hypothesis class is not expressive enough
- b) Generalization from finite data
- c) Standard and robust error being fundamentally at odds
- d) Robust accuracy being hard to optimize
- 3) Which of the following statements is true?
 - a) When the population covariance Σ is equal to the identity matrix I, the standard error does not increase when fitting augmented data
 - b) The parameter error does not change with data augmentation
 - c) Robust Self Training (RST) improves the robust error and hurts (increases) the standard error
 - d) Augmenting the training data set with perturbed examples will decrease the standard error.

