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Explaining Deep Networks is Hard!
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What’s a good visual explanation?
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Good visual explanation

• Class discriminative - localize the category 
in the image


• High resolution - capture fine-grained 
detail
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Work done in explaining Deep Networks

• CNN visualization


• Guided Backpropagation


• Deconvolution


• Assessing Model Trust


• Weakly supervised localization


• Class Activation Mapping (CAM)
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Class Activation Mapping

• Enables Classification CNNs to learn to perform localization


• CAM indicates the discriminative regions used to identify that category


• No explicit bounding box annotations required


• However, it needs to change the model architecture:


• Just before the final output layer, they perform global average pooling on 
the convolutional feature maps


• Use these features for a fully-connected layer that produces the desired 
output

What is it?
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•  : Activation of unit  in spatial location 


•  : Result of global average pooling


•  : input to Softmax layer for class 


•  : CAM for class 
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Class Activation Mapping
How does it work?
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Class Activation Mapping

8



• Requires feature maps to directly precede softmax layers


• Such architectures may achieve inferior accuracies compared to general 
networks on other tasks


• Inapplicable to other tasks like VQA, Image Captioning


• Need a method that doesn’t need any modification to existing architecture


• Enter Grad-CAM!

Class Activation Mapping
Drawbacks
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Gradient weighted Class Activated Mappings

• A class discriminative localization technique that can work on any CNN based 
network, without requiring architectural changes or re-training


• Applied to existing top-performing classification, VQA, and captioning models


• Tested on ResNet to evaluate effect of going from deep to shallow layers


• Conducted human studies on Guided Grad-CAM to show that these 
explanations help establish trust, and identify a ‘stronger’ model from a 
‘weaker’ one though the outputs are the same

Overview
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• Deeper representations in a CNN capture higher-level visual constructs


• Convolutional layers retain spatial information, which is lost in fully connected 
layers


• Grad-CAM uses gradient information flowing from the last layer to understand 
the importance of each neuron for a decision of interest

Grad-CAM
Motivation
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How it works

• Compute : gradient of score  for class  wrt feature maps 


• Global average pool these gradients to obtain neuron importance weights  




• Perform weighted combination of forward activations maps and follow it by ReLU to 
obtain 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Grad-CAM
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Grad-CAM
How it works
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Grad-CAM
Results
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Guided Grad-CAM
Motivation

• Grad-CAM provides good localization, but it lacks fine-
grained detail


• In this example, it can easily localize cat


• However, it doesn’t explain why the cat is labeled as ‘tiger 
cat’


• Point-wise multiplying guided backpropagation and Grad-
CAM visualizations solves the issue
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Guided Grad-CAM
How it works
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Guided Grad-CAM

• With Guided Grad-CAM, it becomes easier to see which 
details went into decision making


• For example, we can now see the stripes and pointed ears 
by using the model predicted it as ‘tiger cat’
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Evaluations
Localization

• Given an image, first obtain class predictions from the network


• Generate Grad-CAM maps for each of the predicted classes


• Binarize with threshold of 15% of max intensity


• Draw bounding box around single largest connected segment of pixels
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Evaluations
Localization
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Class Discrimination

• Evaluated over images from VOC 2007 val set that contain 2 annotated 
categories, and create visualizations for each of them


• For both VGG-16 and AlexNet CNNs, category-specific visualizations are 
obtained using four techniques:


• Deconvolution


• Guided Backpropagation


• Deconvolution with Grad-CAM


• Guided Backpropagation with Grad-CAM

Evaluations
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• 43 workers on AMT were asked “Which of the two 
object categories is depicted in the image?”


• The experiment was conducted for all 4 visualizations, 
for 90 image-category pairs


• A good prediction explanation should produce 
distinctive visualizations for each class of interest

Evaluations
Class Discrimination
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Evaluations
Class Discrimination

Model Accuracy(%)

Deconvolution 53.33

Deconvolution + Grad-CAM 61.23

Guided Backpropagation 44.44

Guided Backpropagation + Grad-CAM 61.23
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Evaluations
Trust - Why is it needed?

• Given two models with the same predictions, which model is more 
trustworthy?


• Visualize the results to see which parts of the image are being used to make 
the decision!
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Evaluations
Trust - Experimental Setup

• Use AlexNet and VGG-16 to compare Guided Backprop and Guided Grad-
CAM visualizations


• Note that VGG-16 is more accurate (79.09mAP vs 69.20)


• Only those instances considered where both models make same prediction 
as ground truth
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Evaluations
Trust - Experimental Setup

• Given visualizations from both models, 54 AMT 
workers were asked were asked to rate 
reliability of the two models as follows


• More/less reliable (+/-2)


• Slightly more/less reliable (+/-1)


• Equally reliable (0)
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Evaluations
Trust - Result

• Humans are able to identify the more accurate classifier, despite identical 
class predictions


• With Guided Backpropagation, VGG was assigned a score of 1.0


• With Guided Grad-CAM, it achieved a higher score of 1.27


• Thus, the visualization can help place trust in a model which will generalize 
better, just based on individual predictions

26



Evaluations
Faithfulness vs Interpretability

• Faithfulness of a visualization to a model is defined as its ability to explain the 
function learned by the model


• There exists a trade-off between faithfulness and interpretability


• A fully faithful explanation is the entire description of the model, which would 
make it not interpretable/easy to visualize


• In previous sections, we saw that Grad-CAM is easily interpretable
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• Explanations should be locally accurate


• For reference explanation, one choice is image occlusion


• CNN scores are measured when patches of the input image are masked


• Patches which change CNN scores are also patches which are assigned high 
intensity by Grad-CAM and Guided Grad-CAM


• Rank correlation of 0.261 achieved over 2510 images in PASCAL 2007 val set

Evaluations
Faithfulness vs Interpretability
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Analyzing Failure Modes for VGG-16

• In order to see what mistakes a network is 
making, first collect the misclassified 
examples


• Visualize both the ground truth class as 
well as the predicted class


• Some failures are due to ambiguities 
inherent in the dataset


• Seemingly unreasonable predictions have 
reasonable explanations
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Identifying Bias in Dataset

• Fine-tuned an ImageNet trained VGG-16 model for the task of classifying 
“Doctors” vs “Nurses”


• Used top 250 relevant images from a popular image search engine


• Trained model achieved good validation accuracy, but didn’t generalize 
well(82%)


• Visualizations helped to see that the model had learnt to look at the person’s 
face/hairstyle to make the predictions, thus learning gender stereotypes
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Identifying Bias in Dataset

• Image search results were 78% male doctors, and 93% female nurses


• Through this intuition, we can reduce bias by adding more examples of 
female doctors, as well as male nurses 


• Retrained model generalizes well (90% test accuracy)


• This experiment helps demonstrate that Grad-CAM can help detect and 
remove biases from the dataset, thus making fair and ethical decisions
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Image Captioning

• Build Grad-CAM over a public available neuraltalk2 implementation, which 
uses VGG-16 CNN for images and an LSTM-based language model


• Given a caption, compute gradient of its log-probability wrt units in the last 
convolutional layer of the CNN
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Image-Captioning
How it works
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Image Captioning
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Image Captioning
Comparison to Dense Cap

• Dense Captioning task requires a system to jointly localize and caption salient 
regions of the image


• Johnson et. al.’s model consists of a Fully Connected Localization Network 
(FCLN) and an LSTM based language model


• It produces bounding boxes and associated captions in a single forward pass


• Using DenseCap, generate 5 region-specific captions with associated 
bounding boxes


• A whole-image captioning model should localize the caption inside the 
bounding box it was generated for
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Image Captioning
Comparison to Dense Cap
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Image Captioning
Comparison to Dense Cap

• Measured by computing the ratio of average activation inside vs outside the 
box


• Uniformly highlighting the whole image gives a baseline of 1.0


• Grad-CAM achieves 


• Guided Backpropagation(adding high resolution detail) gives 


• Best localization seen for Guided Grad-CAM at 

3.27 ± 0.18

2.32 ± 0.08

6.38 ± 0.99
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Visual Question Answering

• Typical VQA pipelines consist of a CNN to model images and an RNN 
language model for questions


• Image and question representations are fused to predict the answer as a 1000 
way classification problem 


• Thus, we can take the scores  for for the answer and use that to compute 
Grad-CAM to show image evidence that supports the answer


• Despite the complexity, the results are surprisingly intuitive

yc
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Visual Question Answering
How it works
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Visual Question Answering

• Das et. al collected human attention maps for a subset of VQA dataset


• These maps have high intensity where humans looked in the image in order to 
answer a visual question


• Human attention maps are compared to Grad-CAM visualizations on 1374 val 
QI pairs using the rank correlation evaluation protocol


• They have a correlation of 0.136, which is statistically higher than chance or 
random attention maps (zero correlation)


• This shows that even non-attention based VQA models are surprisingly good 
at localizing regions required to output a particular answer

Comparison to Human Attention Maps
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Visual Question Answering

• Lu et. al use a 200 layer ResNet to encode the image and jointly learn a 
hierarchical attention mechanism on the question and the image


• As we visualize deeper layers, we find small changes for most adjacent layers, 
but larger changes for layers which involve dimensionality reduction


• This shows that the same approach works for even complicated models

Visualizing ResNet-based VQA model with attention 
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Visual Question Answering
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Conclusion

• Proposed a novel class-discriminative localization technique - Grad-CAM


• Works for any CNN based architecture, without having to modify the network


• Combined Grad-CAM localizations with existing high-resolution visualizations  


• Outperforms all existing approaches on both interpretability and faithfulness


• Extensive human studies reveal that visualizations can discriminate between 
classes more accurately, better reveal trustworthiness, and help identify 
biases


• Showed the broad applicability to off-the-shelf architectures
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Questions?
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Thank You!
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