Write your answers on these pages and show your work. If you feel that a question is not fully specified, state any assumptions you need to make in order to solve the problem. You may use the backs of these sheets for scratch work.

Write your name on this and all other pages of this exam. Make sure your exam contains seven problems on six pages.

Name

__

Student ID

__

<table>
<thead>
<tr>
<th>Problem</th>
<th>Score</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>____</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>____</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>____</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>____</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>____</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>____</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>____</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>____</td>
<td>100</td>
</tr>
</tbody>
</table>
PROBLEM 1 - Search Strategies (30 points)

Consider the search graph drawn below. The initial state is at the top, and goal states are represented by double circles. Note that arcs are directed. Which goal state is reached will depend on the search strategy applied. For each of the search strategies listed below, indicate which goal state is reached (if any) and list, in order, the states explored. (A state is explored when the item containing it is removed from the OPEN list.) Assume that the NEXT-STATES function returns a state’s successors in the same left-to-right order as in the search graph.

Depth-First Search
Goal state reached: _____ States explored: ____________________________

Breadth-First Search
Goal state reached: _____ States explored: ____________________________

Best-First Search
Goal state reached: _____ States explored: ____________________________

Beam Search (with a beam width of 2)
Goal state reached: _____ States explored: ____________________________

Hill Climbing
Goal state reached: _____ States explored: ____________________________

A* Search
Goal state reached: _____ States explored: ____________________________

(over)
PROBLEM 2 - Optimal Solutions and Heuristic Functions (15 points)
The search algorithm A* produces optimal solutions provided the heuristic estimate, \(h' \), never overestimates the actual least cost, \(h \).

Draw a simple search space where \(h' \) does overestimate \(h \) and the A* algorithm returns a non-optimal solution. Explain your answer.

PROBLEM 3 - Short Questions on Search (15 points)

a) Under what circumstances would it make sense to go "down hill" (ie, explore a child whose heuristic value is worse than the parent’s) when executing the hill-climbing search algorithm? When would it not make sense?
b) When is breadth-first search an *admissible* search strategy? Briefly explain.

c) Name two (2) searches that may never find a solution, even when one exists. Briefly explain.

PROBLEM 4 - Executing Lisp (10 points)

Assume the following is typed to a newly-started LISP:

```lisp
(setf a (+ 3 5))
(setf b '(8 (9)))
(setf c '(cons b c))
(setf d '(8 (9)))
(setf e d)
```

What does each of the following return (write "error" if an error condition develops):

a) \(a\) value =

b) \((- 31 a)\) value =

c) \((\text{first} \ (\text{first} \ (\text{rest} \ b)))\) value =

d) \((\text{cons} \ b \ c)\) value =

e) \((\text{list} \ b \ c)\) value =

f) \((\text{append} \ b \ c)\) value =

g) \((\text{list} \ \text{'}a a\)\) value =

h) \((\text{equal} \ b \ d)\) value =

i) \((\text{eq} \ d \ e)\) value =

j) \((\text{eq} \ b \ e)\) value =

(over)
PROBLEM 5 - Cons-Cell Notation (10 points)

i) Represent the list \((1 \ (2 \ (3)) \ 4)\) in cons-cell notation.

ii) Convert the following to list notation.

ANSWER: __
PROBLEM 6 - Understanding Recursive Functions (10 points)

Consider the following recursive function definition:

```
(defun F (x)
    "This is a mystery function."
    (if (atom x)
        0
        (if (numberp (first x))
            (+ (first x) (F (rest x)))
            (+ (F (first x)) (F (rest x))))))
```

a) What is returned by the following:

i) `(F '(7 is prime and 9 is not))`
 value = __________________

ii) `(F '(a (b 13) ((45) 1)))`
 value = __________________

b) Briefly describe what this function computes (don’t merely paraphrase the Lisp code).

PROBLEM 7 - Writing Recursive Functions (10 points)

Consider the function `subset`, which takes two arguments, `set1` and `set2`, both represented as lists of atoms. It returns non-nil only when `set1` is a subset of `set2` (i.e., every member of `set1` is also a member of `set2`).

Write a recursive version of `subset` in Lisp.