
CALF: Comparison of Attribute Layouts on Flash

Priyananda Shenoy Satish Kumar Kotha

Department of Computer Sciences

University of Wisconsin, Madison, WI

{shenoy,satish}@cs.wisc.edu

Abstract

Solid state drives(SSDs) are increasingly being used

for database applications, due to their low seek la-

tency and low power consumption. Solid state drives

differ fundamentally in their characteristics from disk

drives, which mandates that some core database de-

sign decisions, such as column layout, needs to take

into account the specific characteristics of SSDs for

optimal performance. This paper reexamines the

question of column layout models for Flash based

databases. We propose a flexible data storage model

which partitions attributes based on a given work-

load, taking into account both reads and writes. We

evaluate the performance of this intelligent partition-

ing against NSM and C-Store storage models.

1 Introduction

In recent years, the cost-per-byte of Flash drives
has fallen to an extent where it is feasible to build
fairly large applications on Flash storage. The
lack of mechanical parts, fast random access, low

0To appear in DAWN’08: Proceedings of the First
Database Aspects explored by Wisconsin’s New re-
searchers Conf., Dec 2-4, 2008. Madison, WI.
Permission is not given to plagiarize this report for
any class projects.

power consumption and durability are some of
the features which make it a storage medium of
choice. While disk drives will be around for a
while, Flash has the potential to replace mag-
netic disks in most applications.

As we will see in Section 3, Flash drives are
inherently different from disk drives in many re-
spects. A significant number of architecture and
design decisions behind current database sys-
tems have (implicit or explicit) assumptions that
work for disk based systems, but not for Flash
drives. In this paper, we explore the decision of
how columns of a relation are stored in secondary
storage, and examine how it can be optimized
for Flash databases. Instead of statically decid-
ing column layout, we propose a way of coming
up with a layout based on a given workload.

1.1 Organization of the paper

Section 2 briefly introduces the various column-
organization alternatives available. Section 3
gives a short introduction to characteristics of
Flash devices and how they are different from
disk drives. Section 4 gives the analytical cost
modeling of various operations. Section 5 de-
scribes our implementation and experimental
setup. Section 6 describes the results of eval-
uating the performance of our layout with row,

1

column based and CALF recommended page lay-
outs.

2 Related Work

Column organization techniques can be roughly
divided into two groups: Horizontal or row-
major storage models, where all attributes of
a tuple are stored together, and Vertical or
column-major storage models in which the data
belonging to the same attribute are stored to-
gether.

The typical row-major storage model in use
is the N-ary Storage model(NSM). All the at-
tributes of a tuple are laid out contiguously
in a page. Each page maintains a slot table
which maintains the offset of the beginning of
each record. NSM is inefficient when only a
few columns of the relation are being accessed,
since all the attributes are loaded irrespective of
whether they are used or not. CPU Cache per-
formance is also bad, since loading unnecessary
data pollutes the cache.

Decomposition Storage Model (DSM) [CK 85]
was one of the first column-major layouts. DSM
split a n-column relation into n sub-relations,
duplicating the primary key or record-id in each
sub relation. This method saves on data transfer
when only a few columns are accessed, but pays
a significant penalty joining the relations when
multiple attributes are accessed in the query.

C-Store [SAB05] differs from DSM in that it
doesn’t explicitly store a record-id per sub rela-
tion. C-Store maintains a collection of columns,
where an attribute of a column can be dupli-
cated in multiple columns. Different columns
can store the same attribute values in different
orders, which can help in different queries.

Partition Attributes Across(PAX) [ADH01]

improves upon the cache behavior of NSM by
splitting a page into minipages, and storing the
tuples in column-major order, each column in
one minipage. While this improves cache perfor-
mance, this has no impact on I/O transfer costs,
since this just reorganizes data within a page,
not across pages.

Data Morphing(DM) [HP 03] improves upon
the cache performance of PAX, by making
use of locality between attributes to group
concurrently-accessed attributes together. As
with PAX, DM only optimizes in-page layout,
and doesn’t help in reducing I/O transfer costs.
This paper applies the same approach followed
in DM to column layouts across pages to reduce
I/O transfer costs as well.

Multiresolution Block Storage Model(MBSM)
[ZR 03] extends the PAX model to include mul-
tiple pages or blocks. Blocks are arranged to
superblocks, which are in turn grouped into
Megablocks. Each block corresponds to a col-
umn. The relation is partitioned onto multiple
superblocks. This approach has good cache per-
formance and (somewhat) takes care of the data
transfer problem. This model is no better than
column store in systems with inexpensive ran-
dom reads, since most of the organization is to
make use of fast sequential access of disk drives.

There have been comparative studies of row-
store vs. column-store organizations. Holloway
et al. [HD 08] found that in most read-heavy
cases, column stores beat row stores when I/O
was the bottleneck. [HBN06] also found similar
results, and proposed enhancing the row-storage
model with some ideas from column-storage. All
these comparisons were for disk drives based
databases, hence the results may not hold true
for Flash databases.

[SHW08] briefly touches upon storage models
for Flash, and mentions that column-major lay-

2

out is faster than row-major, for read queries.
The authors also touch upon the fact that write
queries pose a problem for column major layouts,
incurring a heavy cost on inserts.

3 Characteristics of Flash

Flash drives have several traits that make them
attractive for read-mostly enterprise applications
such as web-page serving and search. Flash
drives are divided into blocks and each block is
further divided into pages. The memory can be
read or programmed a byte or word in random
access fashion at a time but the unit of erasure
is a block. Because of these characteristics, flash
drives offer more random read I/Os per second,
offer comparable sequential bandwidth, and use
a tenth of the power when compared to disks.
Flash is also cheaper than DRAM and is non-
volatile. Moreover, flash continues to get faster,
cheaper, and denser at a rapid pace. However,
flash drives are limited by their write endurance.
Flash memory cells often wear out after 1000
to 10000 write cycles. Each write cycle requires
erasing a super block before writing the actual
data. Techniques exist to exploit wear levelling
exist to extend the lifetime of the cells but an
overhead of remapping fragments is incurred and
this technique is useful only when there is a free
super block available for the write. Flash mem-
ory also allows multiple memory locations to be
erased or written in one programming operation
and this is another major advantage with respect
to disks. Flash memories also have improved on
reliability which was one of it’s major drawbacks
during initial stages.

4 Our Contribution

We re-evaluate various storage models described
in Section 2 for flash disks. Much work so far
has been focused on exploiting random read-
ing offered by flash disks. We also plan to fo-
cus on various workloads including writes and
analyze relative performance of various storage
techniques. The next section describes our cost
model to start with and it has following assump-
tions or limitations which we plan to get rid of
as time progresses.

• There are no variable length attributes.
For example, if datatype is defined as var-
char(255), we assume that it is implemented
as fixed size of 255 bytes.

• Database application does not have control
on how to write a random page. Choos-
ing an empty block instead of erasing and
writing the block could minimize the costs
associated. We consider average write cost
in all our equations.

• No indexes on any of the columns. We plan
to get rid of this assumption as early as pos-
sible, since it can have significant effect on
the performance equations.

4.1 Cost Modeling

The key idea of Cost Modeling is to analytically
estimate the cost of all operations in database for
all possible layouts. Based on this cost model, we
plan to organize the columns effectively in stor-
age. Note that the cost model considers only
bringing in pages from disk to memory. Some
layouts may be cache-efficient and thus may im-
prove performance, but we treat that as second
order effect in our cost model. Some definitions:

3

• R : A relation in the database.

• A : The set of all columns of R

{a1, a2, · · · , an}.

• sizeof(ai) : The maximum number of bytes
a column can take.

• G : A group is a subset of columns G ⊆ A.

• G : A partition is a set of disjoint groups
{G1, G2, · · · , Gk} such that

⋃

G Gi = A.

• costr: The cost to read a random page.

• costw: The cost to write a random page.

• pagesize: The number of bytes in a page.

• N : number of tuples in the relation.

• k: Storage overhead per record in bytes. For
example, in slotted page implementation, k

is slot table entry size.

The read and write costs are assumed to be
constant. More details about how these costs are
estimated are given in Evaluation Section 6.1.
Note that when |G| = 1, this would reduce to
N-ary storage model, and when |G| = |A|, this
reduces to column-store model.

The records per page for a group measures
the number of tuples which can be stored in
one page, considering only the columns in that
group.

rpp(G) =

⌊

pagesize
∑

a∈G sizeof(a) + k

⌋

To ensure that each page holds at least one
record, we can impose the constraint

∑

a∈G

sizeof(a) + k ≤ pagesize.

For a given partition G, the cost of a query
depends on the type of query. The cost calcula-
tions for each type of query is shown below.

• Q : select * from R

In this case, all the columns of the table are
accessed for all rows.

cost(Q) = costr ×
∑

G∈G

⌈

N

rpp(G)

⌉

.

• Q : select s1, s2, · · · , sp from R

In this case, only some columns of the table
are accessed for all rows. We incur a cost for
a group if we access at least one attribute
from it.

cost(Q) = costr×
∑

G∈G

cost′(G, {s1, s2, · · · , sp})

where,

cost′(G, X) =

{

0 X ∩ G = ∅
⌈

N
rpp(G)

⌉

otherwise

• Q : select s1, s2, · · · , sp from R where

p(w1, w2, · · · , wq) where p is a boolean pred-
icate.

In this case, the cost depends on the selec-
tivity of the query. Let row selectivity of a
predicate be defined as

rowsel(p) = Prtuple r∈R [p(r) = true] .

Assuming that the distribution is uniform,
the probability that none of the tuples in a
given page belonging to a group G match
the predicate is given by (1− rowsel(p))rpp.
Hence the probability that at least one of

4

the tuples in a page matches the predicate
is rowselG(p) = (1− (1− rowsel(p))rpp(G)).
We incur a cost for a page if at least one
record in that page matches the predicate.

Then the cost of query Q is

cost(Q) = costr × (
∑

G∈G

cost′′(G, W, S))

where,

cost′′(G, W, S) =

0 G ∩ W = G ∩ S = ∅

cost′(G, W) G ∩ W 6= ∅

cost′(G, S) G ∩ W = ∅, G ∩ S 6= ∅

×rowselG(p)

• Q: insert into R values(v1, · · · , vn)

For each group, we have to read the last
page and see if there is space available. If
not, we have to allocate a new page and
insert the record there. In terms of I/O,
we incur one page read and one page write
for each insert operation.

cost(Q) = (costr + costw) × |G|

• Q: update table R set s1 = v1, · · · , sp =
vp where p(w1, · · · , wq)

The cost calculation is similar to the select
case seen above. We incur a read and a
write cost for a page if there is at least one
attribute in that group in the set clauses,
and there is at least one record in that page
which matches the predicate.

cost(Q) =
∑

G∈G

cost′′u(G, W, S)

where,

cost′′u(G, W, S) =

0

G ∩ W = ∅, G ∩ S = ∅

costr × cost′(G, W)

G ∩ W 6= ∅, G ∩ S = ∅

rowselG(p) × (costr + costw) × cost′(G, S)

G ∩ W = ∅, G ∩ S 6= ∅

(costr + rowselG(p) × costw) × cost′(G, W)

G ∩ W 6= ∅, G ∩ S 6= ∅

• Q: delete table R where p(w1, · · · , wq)

Delete can be thought of as an update where
every attribute needs to be updated (to a
special ‘deleted’ value). So the cost calcula-
tion is similar to the above case.

cost(Q) =
∑

G∈G

cost′′d(G, W)

where,

cost′′d(G, W) =

rowselG(p) × costw × cost′(G, A)

G ∩ W = ∅

(costr + rowselG(p) × costw) × cost′(G, W)

G ∩ W 6= ∅

Let W = {Qi} be a given workload. Then
the optimal partitioning of a relation R for
the workload is given by

G∗
W = argminG

∑

Qi∈W

costG(Qi).

5

5 Implementation

Our Implementation is broadly divided into
three modules.

• Query Processing Engine: A Query Pro-
cessing Engine converts standard sql for-
mat to CALF format. The main difference
between standard sql format and our for-
mat is adding selectivity as a part of the
query. Since we have not reached the level
of doing predicate matching and maintain-
ing statistics about selectivity, we run the
actual query on a real database. Get se-
lectivity of the query and use it to selec-
tively read pages. For example, sql query
‘update table Table1 set column1 = 1
where column2 = 2’ with four differ-
ent equally likely values for column2 will
be transformed to CALF query ‘update

Table1 0.25 column1 : 1 column2 = 2’.
Note that the third word in the CALF query
is the selectivity.

• Optimal Partitioning Engine: Given schema
and workload, the goal of Optimal Parti-
tioning Engine is to split the columns into
different groups in such a way that cost of
workload according to the CALF analytical
model is minimum. This can be reduced
to Minimum cost Set Partitioning problem
and is NP-Hard. We use Branch and Bound
technique as an approximation to solve this
problem. We start off by assuming table
to have only one column. In this case, all
the layouts are equivalent. We then con-
sider adding second column to the table.
There are two ways to do this. Put both
the columns in same group or divide them
into two different groups. We compute cost
for these two approaches and select the best

layout. The same approach is applied iter-
atively to reach final partition with all the
columns in the schema. The ideal algorithm
would require i! comparisons in ith itera-
tion while this approximation would require
only i comparisons. But this approxima-
tion does not promise best possible parti-
tioning. However, it gives fairly good parti-
tions as shown in previous subsections. We
are working on other better approximations
to this problem that probably include do-
main knowledge as a part of heuristic.

• Database Engine: The Database Engine
consists of Storage module that takes re-
sponsibility of persisting data and PageM-
anager that interprets the stored data and
helps in (un)marshalling of data. We fol-
low Slotted Page structure for all the lay-
outs. Thus, Column layout for a table with
n-columns is actually stored as n-tables with
one column each. We further have some
Meta information on attribute to page num-
ber mapping. This Meta information helps
in easily identifying the pages for a given
group.

Figure 1 demonstrates the toolchain we devel-
oped for the evaluation.

• calfproprocess: Converts SQL files into a
simpler form which the CALF engine can
easily parse. It separates all the table cre-
ation statements into the schema file, and
other statements into query files.

• calfoptimize: Finds the optimal parti-
tioning of attributes based on the analytical
cost model.

6

Figure 1: Toolchain for evaluation

• calfcreatedb: Creates database files,
which link the schema produced with spe-
cific column layout implementations.

• calfexec: Executes the queries on the
given database and measures the time it
takes.

• calfblkload: For initial loading of data
into the database.

6 Evaluation

Our experimental setup was as follows:

• Flash Device: Lenovo ChipsBnk 512MiB
USB Stick over USB 2.0

• File System: ext2 1

1We planned to use a log-structured file system like

• Operating system: Linux 2.6.27-2

• Page Size: 8KB

6.1 Measurement of read/write costs
on flash

We measured the time taken to read and write
one page from the file for different page sizes.
This is used as costw and costr in the Cost
Model calculations. We observed from our tests
that random read and sequential read costs are
equivalent. The following table shows the read
and write costs for various block sizes. As we
have no control over the actual erase operation,
the erase costs are assumed to be amortized
over the write costs.

Page Size Read time Write Time write
read

(ms) (ms)

8K 20.117 111.192 5.5637
16K 40.284 123.331 3.0610
32K 82.392 138.815 1.6767
64K 160.101 160.924 1.0511

As block size increases, the transfer cost begins
to dominate the overall cost of the operation,
especially over a USB connection. We chose a
page size of 8K as a compromise between write-
read ratio and the transfer rate.

6.2 Layout comparison results

We analyze a few workloads and see what our
model predicts for row-store, column-store and
CALF organizations. We then use the same
workload and compare the results from actual
CALF engine to our analytical model. For all
the cases, we initially add 100,000 records to the

logFS instead of a conventional file system, but practical
difficulties getting logFS prevented us from doing so.

7

database before executing the query that is be-
ing analyzed.

• Cost of select * from R while varying the
number of attributes in R.

Figure 2(a) shows the query cost using ana-
lytical model. Note that Optimal layout over-
laps with the Row layout. This is obvious be-
cause size of actual data stored and retrieved
in both the cases is same. But as the number
of groups increase, the total slot table over-
head increases and therefore requires reading
more pages. Thus, N-ary model outperforms
all the other layouts.

Figure 2(b) shows the query cost by actually
running the query on CALF database engine.
The actual results follow the results from an-
alytical model. But, we observe a knee when
number of columns is a multiple of four. We
attribute this to ratio of super block size (erase
block size) to read block size on the flash drive.

• Cost of select s1, s2... from R while
varying the number of attributes in R, keeping
the select clauses constant.

Figure 3(a) shows performance of various lay-
outs when a subset of columns in the table
are selected. The read cost for Row layout re-
mains same as in Case 1 because all the pages
are read into memory always. Column layout
reads relatively more pages with small number
of columns because of added storage overhead,
but with increasing number of columns, it out-
performs Row layout. The Optimal layout in
this case divides s1, s2 into one group and all
the remaining columns into the other. It thus
reduces extra storage overhead and reads only
required data. Therefore, CALF predicts the
best way to layout the columns.

Figure 3(b) shows the actual measured time
for the same schema and query. This graph
is approximately similar to the expected one,
but the column costs are much higher than the
row costs. The optimal is slightly worse than
the row for the first few cases, but is stable as
the number of columns increases.

• Cost of select s1, · · · , sk from R while vary-
ing the number of attributes in the select
clause, keeping the total number of attributes
in R constant(9).

Figure 4(a) shows the analytical cost of the
query as the number of attributes in the se-
lect clause is varied. The cost of Row layout
remains constant because all pages are read
in always. Cost with column layout model in-
creases linearly as expected as adding a new
column in select clause requires reading ad-
ditional pages corresponding to that column.
Again, the CALF Optimal layout selects best
partition of groups as the ones which contain
exactly the same columns as those in the select
clauses.

Figure 4(b) shows the actual measurement.
The graph is close to expected value. The op-
timal one is slightly worse than the group one
because of extra overhead.

• Cost of select s1, s2 from R where

p(w1, w2...) with varying selectivity of
predicate p.

Figure 5(a) shows the analytical cost as the
selectivity of p is varied. This clearly shows a
threshold phenomenon, since we read a page
if at least one of the records in it match the
predicate. We therefore skip a page only if the
selectivity is ≈ 1

N
.

Figure 5(b) shows the measured cost. In the

8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9

C
os

t(
A

na
ly

tic
al

)

Number of Attributes in R

Row
Column
Optimal

(a) Analytical model

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 2 3 4 5 6 7 8 9

T
im

e(
m

ill
is

ec
on

ds
)

Number of Attributes in R

Row
Column

(b) On CALF Engine

Figure 2: select * from R

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 3 4 5 6 7 8 9

C
os

t(
A

na
ly

tic
al

)

Number of Attributes in R

Row
Column
Optimal

(a) Analytical model

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 3 4 5 6 7 8 9

T
im

e(
m

ill
is

ec
on

ds
)

Number of Attributes in R

Row
Column
Optimal

(b) On CALF Engine

Figure 3: select s1, s2 from R

absence of indices, our implementation reads
all the where clause pages, which is why the
sharp threshold is not seen in our implemen-
tation. Contrary to the model, column lay-
out actually performs worse than the row one,
again due to the extra overhead per record.

• Cost of update R sets1 = v1... where

p(w1, w2...) with varying selectivity of pred-

icate p.

Figure 6(a) shows the analytical cost of a fixed
query as the selectivity of the predicate is var-
ied. This is similar to the previous case, other
than the fact that if the predicate matches
there is an additional write cost.

Figure 6(b) shows the actual measurement.
For reasons not quite clear to us, there is sig-

9

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9

C
os

t(
A

na
ly

tic
al

)

Number of Attributes in select clause

Row
Column
Optimal

(a) Analytical model

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9

T
im

e(
m

ill
is

ec
on

ds
)

Number of Attributes in select clause

Row
Column
Optimal

(b) On CALF Engine

Figure 4: select s1, · · · , sk from R

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.01 0.02 0.03 0.04

C
os

t(
A

na
ly

tic
al

)

Selectivity

Row
Column
Optimal

(a) Analytical model

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.001 0.002 0.003 0.004

T
im

e(
m

ill
is

ec
on

ds
)

Selectivity

Row
Column
Optimal

(b) On CALF Engine

Figure 5: select s1, s2 from R where p(w1, w2...)

nificant variation in the timings. We suspect
that it interleaved reads and writes is the cause
of this. Also column and CALF are the ones
which seem to be affected, which might in-
dicate that non sequential writes are causing
problems.

7 Conclusions

In this report, we analyze the cost of various stor-
age models for a solid state device. We introduce
an analytical model that decides on best parti-
tioning of columns based on given workload. In
general, analytical model points out that NSM
performs better when there are relatively fewer
columns because of added overhead in Column

10

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0

C
os

t(
A

na
ly

tic
al

)

Selectivity

Row
Column
Optimal

(a) Analytical model

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 0.001 0.002 0.003 0.004

T
im

e(
m

ill
is

ec
on

ds
)

Selectivity

Row
Column
Optimal

(b) On CALF Engine

Figure 6: update R set s1 = v1, ... where p(w1, w2...)

based approaches but as number of columns and
tuples increase, Column layouts save lot of I/O.
We show that actual costs match the predictions
of analytical model and CALF correctly pre-
dicts optimal partitioning of columns. Of course,
CALF layout may incur high penalties because
the queries chosen for partitioning may not re-
flect the actual workload, and will not work well
for frequently changing workloads. We assume
real workloads to have fairly predictable set of
queries in the long run.

8 Future work

Several directions suggest themselves for future
work. Obviously, fine-tuning cost model and im-
proving it by considering database operations
such as join and including other meta informa-
tion such as indices on a column will be an on-
going task. We would also like to extend the
database engine to variable length attributes and
support more datatypes. Providing atomicity
and consistency by implementing locking is also
top on our list as this could be a serious disad-

vantage to column layouts. In addition, we also
plan to address improvements to Optimal Par-
titioning approximation algorithm and consider
the effect of number of records in database on
the cost model.

References

[GRA07] Goetz Graefe. The Five-minute Rule:
20 Years Later and How Flash Mem-
ory Changes the Rules. In Proceedings
of the Third International Workshop
on Data Management on New Hard-
ware, 2007.

[HD 08] Allison Holloway, David DeWitt.
Read-Optimized Databases, In depth.
In 34th International Conference on
Very Large Data Bases, 2008.

[SHW08] Mehul Shah, Stavros Harizopoulis,
Janet Wiener, Goetz Graefe. Fast
Scans and Joins using Flash Drives.
In Proceedings of the Fourth Inter-

11

national Workshop on Data Manage-
ment on New Hardware, 2008.

[HP 03] Richard Hankins,Jignesh Patel.
Data morphing: An adaptive,cache-
conscious storage technique. In
Proceedings of the 29th VLDB
Conference, 2003.

[ZR 03] Jingren Zhou, Kenneth Ross. A Multi-
resolution Block Storage Model for
Database Design. In Proceedings of
the 2003 IDEAS Conference, 2003.

[SAB05] Mike Stonebraker, Daniel Abadi,
Adam Batkin et al. C-Store: A
Column-oriented DBMS. In Proceed-
ings of the 31st VLDB Conference,
2005.

[CK 85] George Copeland, Setrag Khoshafian.
A decomposition storage model. In
Proceedings of the 1985 ACM SIG-
MOD international conference on
Management of data, 1985.

[ADH01] A. Ailamaki, David DeWitt, Mark
Hill, and M. Skounakis. Weaving re-
lations for cache performance. In Pro-
ceedings of VLDB Conference, 2001.

[HBN06] Alan Halverson, Jennifer Beck-
mann,Jeffrey Naughton,David De-
Witt. A Comparison of C-Store and
Row-Store in a Common Framework
Manuscript, 2001.

12

	Introduction
	Organization of the paper

	Related Work
	Characteristics of Flash
	Our Contribution
	Cost Modeling

	Implementation
	Evaluation
	Measurement of read/write costs on flash
	Layout comparison results

	Conclusions
	Future work

