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Abstract 

There is an inherent tension between two basic aspects of computer design: standardized ISAs 

that allow portable (and enduring) software to be used in a wide variety of systems, and innovative 

ISAs that can take best advantage of ever-evolving silicon technologies.  This tension originates from 

the ultimate objective of computer architects: efficient computer system designs that (1) support 

expanding capabilities and higher performance, and (2) reduce costs in both hardware and software.  

This inherent tension often forces traditional processor designs out of the optimal complexity-

effective envelope because a standard ISA defines the hardware/software interface and it cannot be 

changed without breaking binary compatibility.  In this dissertation, I explore a way of transcending 

the limitations of conventional, standard ISAs in order to provide computer systems that are more 

nearly optimal in both performance and complexity. The co-designed virtual machine paradigm 

decouples the traditional ISA hardware/software interface.  A dynamic binary translation system 

maps standard ISA software to an innovative, implementation-specific ISA implemented in hardware.  

Clearly, one major enabler for such a paradigm is an efficient dynamic binary translation system.   

This dissertation approaches co-designed VMs by applying the classic approach to computer 

architecture:   employing hardware to implement simple high performance primitives and software to 

provide flexibility.  To provide a specific context for conducting this research, I explore a co-

designed virtual machine system that implements the Intel x86 instruction set on a processor that 

employs the architecture innovation of macro-op execution.  A macro-op is formed by fusing a 

dependent pair of conventional, RISC-like micro-ops. 
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Supported by preliminary simulation results, first I use an analytical model of major VM run-

time overheads to explore an overall translation strategy.  Second, I discuss efficient software binary 

translation algorithms that translate and fuse dependent instruction pairs into macro-ops.  Third, I 

propose primitive hardware assists that accelerate critical part(s) of dynamic binary translation.  

Finally, I outline the design of a complete complexity-effective co-designed x86 processor by 

integrating the three major VM enabling technologies: a balanced translation strategy, efficient 

translation software algorithms, and simple, effective hardware primitives.   

By using systematic analysis and experimental evaluations with a co-designed VM infrastruc-

ture, I reach the following conclusions.   

 Dynamic binary translation can be modeled accurately from a memory hierarchy perspective. 

This modeling leads to an overall balanced translation strategy for an efficient hardware / soft-

ware co-designed dynamic binary translation system that combines the capability, flexibility, 

and simplicity of software translation systems with the low runtime overhead of hardware 

translation systems.  

 Architecture innovations are then enabled.  The explored macro-op execution microarchitecture 

enhances superscalar processors via fused macro-ops.  Macro-ops improve processor ILP as 

well as reduce pipeline complexity and instruction management/communication overhead.  

 The co-designed VM paradigm is very promising for future processors.  The outcomes from 

this research provide further evidence that a co-designed virtual machine not only provides bet-

ter steady state performance (via enabling novel efficient architecture), but can also demon-

strate competitive startup performance to conventional superscalar processor designs.  Overall, 

the VM paradigm provides an efficient solution for future systems that features more capabil-

ity, higher performance, and lower complexity/cost.   
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Chapter 1  

Introduction  

Computer systems are fundamental to the infrastructure of our society. They are embodied in 

supercomputers, servers, desktops, laptops, and embedded systems. They power scientific / engineer-

ing research and development, communications, business operations, entertainment and a wide 

variety of electrical and mechanical systems ranging from aircraft to automobiles to home appliances.  

Clearly, the higher performance and the more capability computers can provide, the more potential 

applications and convenience we can benefit from.  On the other hand, these computing devices often 

require very high hardware/software complexity.  System complexity generally affects costs and 

reliability; more recently, it particularly affects power consumption and time-to-market.  Therefore, 

architecture innovations that enable efficient system designs to achieve higher performance at lower 

complexity have always been a primary target for computer architects.  

However,  the several  decades’  history  of computer  architecture  demonstrates that  efficient 

designs are both application-specific and technology-dependent.  In this chapter, I first discuss a 

dilemma that inhibits architecture innovations. Then, we outline a possible solution and the key issues 

to be addressed to enable such a solution.  To better estimate its significance, I briefly position this 

thesis among the background of many related projects.  Finally, we overview the thesis research and 

summarize the major contributions of the research.  



   2

1.1 The Dilemma: Legacy Code and Novel Architectures   
Computer architects are confronted by two fundamental issues,  (1)  the ever-expanding and 

accumulating application of computer systems, and  (2) the ever-evolving technologies used for 

implementing computing devices. A widely accepted task for computer architects is to find the 

optimal design point(s) for serving existing and future applications with the current hardware tech-

nology. Unfortunately, the two fundamental issues are undergoing different trends that are not in 

harmony with each other.   

First, consider the trend for computer applications and software. We observe that for end-users 

or service consumers the most valuable feature of a computing device is its functional capability. 

Practically speaking, this capability manifests itself as the available software a computer system can 

run.  As applications expand and accumulate, software is becoming more complex and its develop-

ment, already known to be a very expensive process, is becoming more expensive.  The underlying 

reasons are (1) computer applications themselves are becoming more complex as they expand; and 

(2) the conventional approach to architecture defines the hardware/software interface so that hardware 

implements the performance-critical primitives, and software provides the eventual solution with 

flexibility.  Moreover, even porting a whole body of software from a binary distribution format (i.e. 

ISA, Instruction Set Architecture) to a new binary format is also a prohibitively daunting task.  As 

computer applications continue to expand, a huge amount of software will accumulate.  Then, it is 

naturally a matter of fact that software developers prefer to write code only for a standard binary 

distribution format to reduce overall cost. This observation about binary compatibility has been 

verified by the current trend in the computer industry – billions of dollars have been invested on 

software for the (few) surviving ISAs.  
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Next,   turn to the other side of the architecture interface,  and  consider the technologies that 

architects rely on to implement computing devices. There has been a trend of  rapidly improving and 

evolving technology throughout the entire history of electronic digital computers. Each technology 

generation provides its specific opportunities at the cost of new design challenges.  It has been 

recognized that advanced approaches for achieving efficient designs (for a new technology genera-

tion) often require a new supporting ISA based on awareness of the technology or even dependent on 

the technology.  For example, RISCs [103] were promoted to reduce complexity and enable single-

chip pipelined processor cores.  VLIW [49] was proposed as a means for further pushing the ILP 

envelope and reducing hardware complexity. Recently, clustered processors, for example, Multi-

cluster [46] and TRIPS [109], were proposed for high performance, low complexity designs in the 

presence of wire delays [59].  Technology trends continue to present opportunities and challenges: 

billion-transistor chips will become commonplace, power consumption has become an acute concern, 

design complexity has become increasingly burdensome and perhaps even the limits of CMOS are 

being approached.  Novel ways of achieving efficient architecture designs continue to be of critical 

importance.  

Clearly, the two trends just described conflict with each other.  On one hand, we are accumu-

lating software for legacy ISA(s).  On the other hand, in a conventional system, the ISA is the 

hardware/software interface that cannot be easily changed without breaking binary compatibility. 

Lack of binary compatibility can be fatal for some new computer designs and can severely constrain 

design flexibility in others.  For example, RISC schemes survive more as microarchitecture designs, 

requiring complex hardware decoders to match legacy instruction sets such as the x86.  Additionally, 

there is yet no evidence that VLIW can overcome compatibility issues and succeed in general-

purpose computing.  
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Ironically, the wide-spread application of computer systems seems to be at odds with architec-

ture innovations.  And this paradox specifically manifests itself  as the legacy ISA dilemma that has 

long been a practical reality and has inhibited modern processor designers from developing new 

ISA(s). 

1.2 Answer: The Co-Designed Virtual Machine Paradigm   
The legacy ISA dilemma results from the dual role of conventional ISA(s) as being both the 

software binary distribution format and the interface between software and hardware. Therefore, 

simply decoupling these two roles leads to a solution.  

The binary format ISA used for commercial software distribution is called the architected ISA, 

for example, the x86 [6~10, 67~69] or PowerPC ISA [66].  The real interface that hardware pipeline 

implements, called the implementation ISA (or native ISA), is a separate ISA which can be designed 

with relatively more freedom to realize architecture innovations.  Such innovations are keys to realize 

performance and/or power efficiency advantages.  However, this decoupling also introduces the issue 

of mapping software for the architected ISA to the implementation ISA. This ISA mapping can be 

performed either by hardware or by software (Figure 1.1).  

If the mapping is performed by hardware, then front-end hardware decoders translate legacy 

instructions one-by-one into implementation ISA instruction(s) that the pipeline backend can execute.  

For example, all recent high performance x86 processors [37, 51, 58, 74] adopt RISC microarchitec-

ture to reduce pipeline complexity. Complex CISC decoders are employed to decompose (crack) x86 

instructions into RISC-style implementation ISA instructions called micro-ops or uops. Although this 

context-free mapping employs relatively complex circuitry that consumes power every time an x86 

instruction is fetched and decoded, the generated code is suboptimal due to inherent redundancy and 
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Software in Architected ISA:   OS, Drivers, Lib code & Applications

inefficiency [63, 114] (Figure 1.1 left box).  Therefore, as a matter of fact, to map effectively from an 

architected ISA to an implementation ISA, context-sensitive translation and optimization are needed 

to perform overall analysis over a larger translation unit, for example a basic block or a superblock 

[65] composed of multiple basic blocks. This kind of context-sensitive translation appears to be 

beyond the complexity-effective hardware design envelope.  

If the mapping is performed by a concealed layer of software that is co-designed with the im-

plementation ISA and the hardware (Figure 1.1 right box), the overall design paradigm is a co-

designed virtual machine (VM). The layer of concealed software is the virtual machine monitor 

(VMM),  and it is capable of conducting context-sensitive ISA translation and optimization in a 

complexity-effective way.  This VM design paradigm is exemplified in Transmeta x86 processors 

[82, 83], IBM DAISY [41] / BOA [3] projects and has an early variation successfully applied in IBM 

AS/400 systems [12, 17].  

D
ynam

ic Translation

Implementation 
ISA   e.g. 

Fusible ISA 

Architected ISA
e.g. x86

Hardware Implementation:    Processor(s), MEM system, I/O devices

PipelineCode $

Software 
Binary 

Translator

Pipeline

Decoders

Conventional 
HW Designs 

VM paradigm 

 
Figure 1.1   Co-designed virtual machine paradigm  
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However, the co-designed VM paradigm also involves some design tradeoffs. The decoupled 

implementation ISA of the VM paradigm brings flexibility and freedom for realizing innovative 

efficient microarchitectures. But it also introduces VMM runtime software overhead for emulating the 

architected ISA software on the implementation ISA platform. This emulation involves dynamic 

binary translation and optimization that is a major source of performance overhead. 

1.3 Enabling Technology: Efficient Dynamic Binary Translation   
In a co-designed VM, a major component of the VMM is dynamic binary translation (DBT) 

that maps architected ISA binaries to implementation ISAs. And it is this ISA mapping that causes 

the major runtime overhead.  Hence, efficient DBT is the key enabling technology for the co-designed 

VM paradigm.  

Since a co-designed VM system is intended to enable an innovative efficient microarchitecture, 

it is implied that the translated native code executes more efficiently than conventional processor 

designs. The efficiency advantage comes from the new microarchitecture design and from the 

effectiveness or quality of the DBT system co-designed with the new microarchitecture.  Once the 

architected ISA code has been translated, the processor achieves a steady state where it only executes 

native code.   

Before the VM system can achieve steady state, however, the VM system first must invoke 

DBT for mapping ISAs, thereby incurring an overhead.  This process is defined as the startup phase 

of the VM system.  The translation overhead (per architected ISA instruction) of a full-blown opti-

mizing DBT is quite heavy, on the order of thousands of native instructions per translated instruction. 

For example, DAISY [41] takes more than four thousands  native operations to translate and optimize 

one PowerPC instruction for its VLIW engine. The translation (per Alpha instruction) to the supersca-
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lar-like ILDP ISA takes about one thousand Alpha instructions [76, 78].   To reduce the heavy DBT 

overhead, VM systems typically take advantage of the fact that for most applications, only a small 

fraction of static instructions execute frequently (the hotspot code). Therefore, an adaptive/staged 

translation strategy can reduce  overall DBT overhead. That is, staged emulation uses a light-weight 

interpreter or simple straightforward translator to emulate infrequent code (cold code) and thus avoid 

the extra optimization overhead.  The reduced optimization overhead for cold code comes at the cost 

of inferior VM performance when emulating cold code.  Both hotspot DBT optimization time 

overhead and inferior cold code emulation performance contribute to the so called slow startup 

problem for VM systems. And slow startup has long been a major concern regarding the co-designed 

VM paradigm because slow startup can easily offset any performance gains achieved while executing 

translated native code. 

Figure 1.2 illustrates startup overheads using benchmarks and architectures described in more 

detail in Section 3.2. The figure compares startup performance of a well-tuned, state-of-the-art VM 

model with that of a conventional superscalar processor running a set of Windows application 

benchmarks. The x-axis shows time in terms of cycles on logarithmic scale.  The IPC performance 

shown on the y-axis is normalized to steady state performance that a conventional superscalar 

processor can achieve.  And the horizontal line across the top of the graph shows the VM steady-state 

IPC performance (superior to the baseline superscalar).  The graphed IPC performance is the aggre-

gate IPC, i.e. the total instructions executed up to that point in time divided by the total time. At a 

give point in time, the aggregate IPCs reflect the total numbers of instructions executed, making it 

easy to visualize the relative overall performance up to that time.   

The relative performance curves illustrate how slowly the VM system starts up when compared 

with the baseline superscalar.   An interesting measure of startup overhead is the time it takes for a 
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co-designed VM to “catch up” with the baseline superscalar processor. That is, the time at which the 

co-designed VM has executed the same number of instructions (as opposed to the time at which the 

instantaneous IPCs are equal, which happens much earlier).  In this example, the crossover, or 

breakeven, point occurs at around 200-million cycles (or 100 milliseconds for a 2.0 GHz processor 

core).  

Figure 1.2   Relative performance timeline for VM components 

Clearly, long-running applications with small, stable instruction working sets can benefit from 

the co-designed VM paradigm with startup overheads of this magnitude. However, there are impor-

tant cases where slow startup can put a co-designed VM at a disadvantage when compared with a 

conventional processor.  
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Example cases include:  

 Workloads consisting of many short-running programs or fine-grained cooperating tasks: 

execution may finish before the performance lost to slow startup can be compensated for.    

 Real-time applications: real-time constraints can be compromised if any real-time code is not 

translated in advance and has to go through the slow startup process.  

 Multitasking server-like systems that run large working-set jobs: the slow startup process can 

be further exacerbated by frequent context switches among resource competing tasks. A lim-

ited code cache size causes hotspot translations for a switched-out task being replaced. Once 

the victim task is switched back in, the slow startup has to be repeated.   

 OS boot-up or shut-down:  OS boot-up/shut-down performance is important to many client side 

platforms such as laptops and mobile devices.  

It is clear that  the co-designed VM paradigm can provide a complexity-effective solution if 

dynamic binary translation system can be made efficient. Therefore, the major objectives of this 

research are to address two complementary aspects of efficient binary translation: an efficient 

dynamic binary translation process and efficiently executing native code generated by the translation 

process.  

An efficient dynamic binary translation process speeds up the startup phase by reducing run-

time translation overhead. Using hardware translation results in a practically zero runtime overhead at 

the cost of extreme complexity whereas software translation provides simplicity and flexibility at the 

cost of runtime overhead.  Therefore, the objective here is to find hardware/software co-designed 

solutions that ideally demonstrate overheads (nearly) as low as  purely hardware solutions, and 

simultaneously feature the same level of simplicity and flexibility as software solutions. The feasibil-
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ity of such an overall approach relies on applying more advanced translation strategies and adding 

only simple hardware assists that accelerate the critical part of the translation process (again, primi-

tives).  In this thesis, we search for a comprehensive solution that combines efficient software 

translation algorithms, simple hardware accelerators and a new adaptive translation strategy balanced 

for hotspot performance advantages and its translation overhead.    

Efficient native code execution affects VM performance mainly for program hotspots. The 

higher performance translated native code runs, the more efficiency and benefits the VM system 

achieves.  To serve as a research vehicle that illustrates how efficient microarchitectures are enabled 

by the VM paradigm cost-effectively, we explore a specific co-designed x86 virtual machine in detail.  

This example VM features macro-op execution [63] to show that a co-designed virtual machine can 

provide elegant solutions for real world architected ISA such as the x86.  

1.4 Prior Work on Co-Designed VMs    
The mapping from an architected ISA to an implementation ISA is performed by either hard-

ware or software in real processor designs.   

Both Intel and AMD x86 processors [37, 51, 53, 58, 74] translate from the x86 instruction set to 

the internal RISC-style micro-ops (implementation ISA instructions) via hardware decoders.  As 

already pointed out, the advantage of hardware decoders is very fast startup performance. The 

disadvantage is extra hardware complexity at the pipeline front-end and limited capability for transla-

tion/optimization due to context-free decoders.  Regarding native code quality, it has been observed 

that suboptimal internal code [114] is a major issue for these hardware-intensive approaches.   

Transmeta x86 processors, from the early Crusoe [54, 82] to the later Efficeon [83, 122], per-

form ISA mapping using dynamic binary translation systems called CMS (Code Morphing Software). 

These software translation systems eliminate x86 hardware decoding circuits that run continuously.  
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CMS exploits a staged, adaptive translation strategy to spend appropriate amount of optimizations for 

different parts of the program code.  It performs runtime hotspot optimization cost-effectively and 

with more integrated intelligence.  Although there is no published data about CMS runtime translation 

overhead, it is projected to be quite significant for benchmarks or workloads such as Windows 

applications [15, 82,83].  Transmeta Efficeon processors also introduced some hardware assists [83] 

for the CMS interpreter.  However, the details are not published. 

There are also prior research efforts in the co-designed VM paradigm. IBM co-designed VMs 

DAISY [41] BOA [3] use DBT software to map PowerPC binaries to a VLIW hardware engine.  The 

startup performance is not explicitly addressed and the translation overhead is projected to be at least 

similar to that of the Transmeta CMS systems [41, 83].  

A characteristic property of VM systems is that they usually feature translation/optimization 

software and a code cache. The code cache resides in a region of physical memory that is completely 

hidden from all conventional software.  In effect the code cache [13, 41] is a very large trace cache.  

The software is implementation-specific and is developed along with the hardware design.  

All the related co-designed VM systems discussed above employ in-order VLIW pipelines. As 

such, considerably heavier software optimization is required for translation and re-ordering instruc-

tions.  In this thesis, we explore an enhanced superscalar microarchitecture, which is capable of 

dynamic instruction scheduling and dataflow graph collapsing for better ILP. 

The ILDP project [76, 77] implements a RISC ISA (Alpha) with a co-designed VM. Because 

the underlying new ILDP implementation ISA and microarchitecture is superscalar-like that reorder 

instructions dynamically, their DBT translation is much simpler than mapping to VLIW engines. 

However, the startup issue was not addressed [76, 78].  
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This thesis explicitly addresses the startup issue, as well as the issue of quality native code gen-

erated by DBT.  The approach taken in this research carries the co-designed hardware/software 

philosophy further by exploring simple hardware assists for DBT.  The evaluation experiments are 

conducted for a prominent CISC architected ISA, the x86. 

1.5 Overview of the Thesis Research 
The major contributions in this thesis research are the following.  

 Performance modeling of DBT systems.    A methodology for modeling and analyzing 

dynamic translation overhead is proposed.  The new approach enables the understanding VM 

runtime behavior --- it models VM system performance from a memory hierarchy perspective.  

Major sources of overhead and potential solutions are then easily identified.  

 Hardware / software co-designed DBT systems.   A hardware / software co-designed approach 

is explored for improving dynamic binary translation systems.  The results support enhancing 

the VMM by applying a more balanced software translation strategy and by adding simple 

hardware assists. The enhanced DBT systems demonstrate VM startup performance that is very 

competitive with conventional hardware translation schemes.  Meanwhile, an enhanced VM 

system can achieve hardware simplicity and translation/optimization capabilities similar to 

software translation systems.    

 Macro-op execution microarchitecture (Joint work with Kim and Lipasti [63]). An enhanced 

superscalar pipeline, named macro-op execution, is proposed and studied to implement the x86 

instruction set.   The new microarchitecture shows superior steady-state performance and effi-

ciency by first cracking x86 instructions into RISC-style micro-ops and then fusing dependent 

micro-op pairs into macro-ops that are streamlined for processor pipeline. Macro-ops are 
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treated and processed as single entities throughout the entire pipeline.  Processor efficiency is 

improved because the fused dependent pairs not only reduce inter-instruction communication 

and instruction level management, but also collapse dataflow graph to improve ILP.   

 An example co-designed x86 virtual machine system.  To evaluate the significance of the 

above individual contributions, we design an example co-designed x86 virtual machine system 

that features the efficient macro-op execution engine.    The overall approach is to integrate the 

discovered valuable software strategies and hardware designs into a synergetic VM system.  

Compared with conventional x86 processor designs, the example VM system demonstrates 

overall superior steady state performance and competitive startup performance. The example 

VM design also inherits the complexity-effectiveness of the VM paradigm.   

 

The rest of the dissertation is organized as follows.  

Chapter 2 introduces the x86vm framework that serves as the primary vehicle for conducting 

this research.  Then a baseline co-designed x86 virtual machine is proposed for further investigation 

of the VM system. The baseline VM represents a state-of-the-art VM that employs software-only 

DBT. Then, the three major VM components, the new microarchitecture, the co-designed VM 

software and the implementation ISA are described.  

Chapter 3 addresses the translation strategy. It presents a performance modeling methodology 

for VM systems from a memory hierarchy perspective.  The dynamics of translation-based systems 

are explored within this model. Then, an overall translation strategy for reducing VM runtime 

overhead is proposed.   

Chapter 4 addresses the translation software that determines the efficiency of translated native 

code in the proposed VM system.  I discuss the major technical issues such as translation and optimi-
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zation algorithms that generate efficient native code for the macro-op execution microarchitecture. 

Meanwhile, the algorithms are aware of translation efficiency to reduce overhead.    

Chapter 5 addresses the translation hardware support. I propose simple hardware assists for bi-

nary translators.  This chapter discusses the hardware assists from architecture, microarchitecture, and 

circuit perspectives, along with some analysis of their complexity. I also discuss other related hard-

ware assists that are not explicitly studied in this thesis.  

Chapter 6 emphasizes balanced synergetic integration of all VM aspects addressed in the thesis 

via a complete example co-designed x86 virtual machine system.  The complete VM system is 

evaluated and analyzed with respect to the specific challenges architects are facing today or will face 

in the near future. Evaluations are conducted via microarchitecture timing simulation.  

Chapter 7 summarizes and concludes the thesis research.  

Because co-designed virtual machine systems involve many aspects of hardware and software, 

I evaluate individual thesis features and discuss the related work in each chapter. That is, evaluation 

and related work are distributed among the chapters.  
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Chapter 2    

The x86vm Experimental Infrastructure  

The x86 instruction set [67~69, 6~10] is the most widely used ISA for general purpose com-

puting. The x86 is a complex instruction set that pose many challenges for high-performance, power-

efficient implementations. This makes it an especially compelling target for innovative, co-designed 

VM implementations and underlying microarchitectures. Consequently, the x86 was chosen as the 

architected ISA for this thesis research. 

As part of the thesis project, I developed an experimental framework named x86vm for re-

searching co-designed x86 virtual machines. This chapter briefly introduces the x86vm, framework, 

including its objectives, high-level organization, and evaluation methodology.  I use this infrastruc-

ture first to characterize x86 applications and identify key issues for implementing efficient x86 

processors.  The results of this characterization suggest a new efficient microarchitecture employing 

macro-op execution as the execution engine for the co-designed VM system.  This microarchitecture 

forms the basis of the co-designed x86 virtual machine that is developed and studied in the remainder 

of the thesis.  
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2.1 The x86vm Framework  
The co-designed VM paradigm adds flexibility and enables processor architecture innovations 

that may require a new ISA at the hardware/software interface. Therefore, there are two major 

components to be modeled in a co-designed VM experimental infrastructure. The first is the co-

designed software VMM and the other is the hardware processor.  The interface between the two 

components is the implementation ISA.  

There are several challenges for developing such an experimental infrastructure, especially in 

an academic environment. The most important are: (1) The complexity of microarchitecture timing 

model for a co-designed processor is of the same as for a conventional processor design. (2) In a 

research environment, the implementation ISA is typically not fixed nor defined at the beginning of 

the project. (3) Dynamic binary translation is a major VMM software component. Although there are 

many engineering tradeoffs in implementing dynamic binary translation, for the most part experimen-

tal data regarding these tradeoffs has not been published.  Moreover, because of its complexity, a 

dynamic binary translation system for the x86 ISA is an especially difficult one.  

Figure 2.1 sketches the x86vm framework that I have developed to satisfy the infrastructure 

challenges.  There are two top-level components. The x86vmm component models the software VMM 

system,  and the microarchitecture component models the hardware implementation for the processor 

core, caches, memory system etc. The interface between the two is an abstract ISA definition.  These 

top-level components and interface should be instantiated into concrete implementations for a specific 

VM design and evaluation.  In this section, I overview high level considerations and trade-offs 

regarding instantiation of these top level components.   
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The VMM components (upper shaded box in Figure 2.1) are modeled directly by developing 

the VM software as part of the VM design.  To support modeling of a variety of x86 workloads, 

which employ a wide variety of the x86 instructions,  I extracted the x86 decode and x86 instruction 

emulation semantic routines from BOCHS 2.2 (A full system x86 emulation system [84]).  In each 

x86 instruction semantic routine, I added additional code to crack the x86 instruction into abstract 

RISC-style micro-ops. For a specific VM design, these abstract micro-ops are translated by the 

dynamic binary translation system into implementation ISA instructions that are executed on the 

specific co-designed processor.   

The implementation ISA is one of the important research topics in this thesis. An early instan-

tiation of the framework briefly explored an ILDP ISA [76].  The eventual implementation ISA is a 

(RISC-style) ISA named the fusible instruction set, which will be overviewed in Section 2.4.   
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Figure 2.1   The x86vm Framework 



   18

The microarchitecture components  (in the lower shaded box in Figure 2.1)  are modeled via 

detailed timing simulators as is done in many architecture studies.  For the fusible instruction set, I 

developed a microarchitecture simulator based on H.-S. Kim’s IBM POWER4-like detailed supersca-

lar microarchitecture simulator [76].  To address x86 specific issues, I adapted it and extended it to 

model the new macro-op execution microarchitecture.  

The timing simulators in the x86vm infrastructure are trace-driven. The reason for using trace-

driven is primarily to reduce the amount of engineering for developing this new infrastructure. 

However, there are implications due to trace-driven simulations: (1) Trace-driven simulations do not 

perform functional emulation simultaneously with timing evaluation. Therefore, there is no guarantee 

that the timing pipeline produces exactly the same results as an execution-driven simulator. In this 

thesis research, we inspected the translated code, and verified that the simulated instructions are the 

same (although re-ordered). However, there is no verification of the execution results produced by the 

timing pipeline as timing models do not calculate values. (2) Trace-driven timing models also lose 

some precision for timing/performance numbers. For example, “wrong-path” instructions are not 

modeled. Wrong path instructions may occasionally prefetch useful data and/or pollute the data 

cache. Similarly, branch predictor and instruction cache behavior may be affected. In many cases, 

these effects cancel each other, in others they do not.    

The primary ISA emulation mechanism is dynamic binary translation (DBT), but other emula-

tion schemes such as interpretation and static binary translation are sometimes used.  In the design of 

DBT systems, there are many trade-offs to be considered, for example: (1) choosing between an 

optimizing DBT or a simple light-weight translation, (2) deciding the (number of) stages of an 

adaptive/staged translation system and (3) determining the transition mechanisms between the stages.  
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Static translation does not incur runtime overhead. However, it is very difficult, if possible at 

all, to find all the individual instructions in a static binary (code discovery [61]) for a variable length 

ISA such as the x86, which also allows mixing data with code.  Additionally, for flexibility or 

functionality, many modern applications execute code that is dynamically generated or downloaded 

via a network. Static binary translation lacks the capability to support dynamic code and dynamic 

code optimization.   

The emulation speed of an interpreter is typically 10X to 100X slower than native execution. 

Some VM systems employ an interpreter to avoid performing optimizations on non-hotspot code that 

usually occurs during the program startup phase. An alternative (sometimes an addition to) interpreta-

tion is simple basic block translation (BBT) that translates code one basic block a time without 

optimization. The translated code is placed in a code cache for repeated reuse. For most ISAs, the 

simple BBT translation is generally not much slower than interpretation, so most recent binary 

translation systems skip interpretation and immediately begin execution with simple BBT. The Intel 

IA-32 EL [15] uses this approach,  for example.  

For a co-designed VM, full ISA emulation is needed to maintain 100% binary compatibility 

with the architected ISA,  and high performance emulation is necessary to unleash all the advantages 

of new efficient processor designs. Therefore, the x86vm framework adopts a DBT-only approach for 

ISA emulation.  For complexity-effectiveness, a two-stage adaptive DBT system is modeled in the 

framework.  This adaptive system uses a simple basic block translator (BBT) for non-hotspot code 

emulation and a superblock translator (SBT) for hotspot optimization. The terminology used in this 

thesis is that DBT is the generic term that includes both BBT and SBT as special cases. The dynamics 

and trade-offs behind a two-stage translation system will be further discussed in Chapter 3 where 
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DBT performance modeling and analysis are systematically considered.  In this section, we outline 

the high level organization of the DBT translation framework. 

There are four major VMM components (Figure 2.2a) in the x86vm framework. (1) A simple 

light-weight basic block translator (BBT) that generates straightforward translations for each basic 

block when it is first executed; (2) An optimizing superblock binary translator (SBT) that optimizes 

hotspot superblocks;  (3) Code caches – concealed VM memory areas for holding BBT and SBT 

translations; and (4) the VMM runtime system that orchestrates the VM execution: it executes transla-

tion strategy by selecting between BBT and SBT for translation; it recovers precise program state and 

manages the code caches, etc. 

Figure 2.2b is the VM software flowchart.  When an x86 binary starts execution, the system 

enters the VM software (VM mode) and uses the BBT translator to generate fusible ISA code for 

initial emulation (Figure 2.2b). Once a hotspot superblock is detected, it is optimized by the SBT 

system and placed into the code cache.  Branches between translation blocks may be linked initially 

by the VMM runtime system via translation lookup table, but are eventually chained directly in the 

code cache. For most applications, the VM software will quickly find the instruction working set, 

optimize it, and then leave the processor executing in the translated code cache as the steady state, 

which is defined as the translated native mode (shaded in Figure 2.2).  
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Figure 2.2   Staged Emulation in a Co-Designed VM  
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For driving the trace-driven timing pipeline with the translated code blocks, the x86vmm run-

time controller object has a special method, named exe_translations. Whenever the x86vm system has 

translated code for the instruction sequence from the x86 trace stream, this method verifies and 

ensures that the translated code correctly follows the corresponding x86 instruction stream. Then it 

feeds the timing model with the translated code sequence.  Memory addresses from the x86 trace 

steam are also passed to the corresponding translated native uops to model the memory system 

correctly. The fetch stage of the timing pipeline reads the output stream of this method and models 

timing for fetching such as I-TLB, I-cache and branches.    

2.2 Evaluation Methodology  
For evaluating the proposed co-designed VM, we use the currently dominant processor design 

scheme, the superscalar microarchitecture, as the reference/baseline system. Ideally, the reference 

system would accurately model the best-performing x86 processor.  However, for practical reasons 

(not the least of which are intellectual property issues), such a reference system is not available.   For 

example, the internal micro-ops and key design details/trade-offs for real x86 processors are not 

publicly available. Consequently, the reference x86 processor design in this research is an amalgam 

of the AMD K7/K8 [37,74] and Intel Pentium M [51] designs. The reference design is based on 

machine configuration parameters such as pipeline widths, issue buffer sizes, and branch predictor 

table sizes that are published.  The detailed reference configuration will be described in more detail in 

the specific evaluation sections.  

Performance evaluation is conducted via detailed timing simulation. The simulation models for 

different processor designs are derived from the x86vm framework.  For the reference x86 processors, 

modified BOCHS 2.2 [84] x86 decode/semantic routines are used for functional simulation. Then, 

RISC micro-ops are generated from the x86 instructions for simulation with the reference x86 timing 
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simulator.  The reference timing model is configured to be similar to the AMD K7/K8 and Intel 

Pentium M designs.  For the co-designed VM designs, dynamic binary translators are implemented as 

part of the concealed co-designed virtual machine software. A simulation model of the x86vm 

pipeline is used for accurately modeling the detailed design of the various co-designed processor 

cores.   

The SPEC2000 integer benchmarks and Winstone2004 Business Suite are selected as the simu-

lation workload. A brief description of the benchmarks given in Table 2.1.   

Benchmark binaries for the SPEC2000 integer benchmarks are generated by the Intel C/C++ 

v7.1 compiler with SPEC2000 –O3 base optimization.  Except for 253.perlbmk, which uses a small 

reference input data set, the SPEC2000 benchmarks use the test input data set to reduce simulation 

time.  SPEC2000 binaries are loaded by x86vm into its memory space and emulated by the extracted 

BOCHS2.2 code to generate “dynamic traces” for the rest of the simulation infrastructure. The 

adapted BOCHS code can also generate uops while performing the functional simulation.   

Winstone2004 is distributed in binary format with an embedded data set.  Full system traces 

are collected randomly for all the Windows applications running on top of the Windows XP operating 

system. A colleague, W. Chang,  installed Window XP with the SP2 patch inside SimICS [91] and set 

up the Winstone 2004 benchmark.  This system was then used for collecting traces that serve as x86 

trace input streams to the x86vm framework. When processing these x86 trace files, the x86vm 

infrastructure does not need to perform functional emulation.  
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Table 2.1   Benchmark Descriptions 

SPEC2K INTEGER  BRIEF DESCRIPTION 

164.gzip Data compression utility 
175.vpr CAD tool : FPGA circuit placement and routing 
176.gcc C/C++ Compiler.  
181.mcf Minimum cost flow network 
186.crafty Artificial Intelligence: Chess program 
197.parser Artificial Intelligence: Natural language processing 
252.eon Computer Graphics: Ray tracing 
253.perlbmk Perl scripts execution environment.  
254.gap Computational group theory 
255.vortex Objected oriented database system.  
256.bzip2 Data compression utility.  
300.twolf CAD tool for electronic design: place and route simulator.  

 

WINSTONE2004 BENCH BRIEF DESCRIPTION 

Access Databases, reports 
Excel  Data processing spread sheet.  
Front Page Document processing application.  
Internet Explorer Internet webpage browsing application 
Norton Anti-virus Safe work environment: Anti-virus protection system.  
Outlook Emails, calendars, scheduler.  
Power Point Document, Presentation utility.  
Project Project planning, management tool 
Win-zip Data archive, compression utility.  
Word Document editing application.  

There are two important performance measurements, steady state performance and the startup 

performance.  For steady state performance evaluation, long simulations are run to ensure steady state 

is reached.  The SPEC2000 CPU benchmarks runs are primarily targeted at measuring steady state 

performance. All programs in SPEC2000 are simulated from start to finish. The entire benchmark 

suite executes more than 35 billion x86 instructions.  For startup performance measurement, short 



   25

simulations that stress startup transient behavior are used. Because Windows applications are deemed 

to be challenging for startup performance, especially for binary translation based systems, we focus 

on Windows benchmarks for the startup performance study.  

2.3 x86 Instruction Characterization 
The x86 instruction set uses variable-length instructions  that provide good code density. ISA 

code density is important for both software binary distribution and high performance processor 

implementation. A denser instruction encoding leads to smaller code footprint that can help mitigate 

the increasingly acute memory wall issue and improve instruction fetch efficiency. However, good 

x86 code density comes at the cost of complex instruction encoding. The x86 encoding often assumes 

implicit register operands and combines multiple operations into a single x86 instruction. Such a 

complex encoding necessitates complex decoders at the pipeline front-end. We characterize x86 

instructions for the SPEC2000 integer and the WinStone2004 Business workloads. The goal is to 

search for an efficient new microarchitecture and implementation ISA design.  

Because most x86 implementations decompose, or crack, the x86 instructions into internal 

RISC style micro-ops.  Many CISC irregularities such as irregular instruction formats, implicit 

operands and condition codes, are streamlined for a RISC core during the CISC-to-RISC cracking 

stage. However, cracking each instruction in isolation does not generate optimal micro-op sequences 

even though the CISC (x86) binaries are optimized. The “context-free” cracking will result in 

redundancies and inefficiencies. For example, redundant address calculations among memory access 

operations, redundant stack pointer updates for a sequence of x86 push or pop instructions [16], 

inefficient communication via condition flags due to separate branch condition tests and the corre-

sponding branch instructions.  Moreover, the cracking stage generates significantly more RISC 

micro-ops than x86 instructions that must be processed by the backend execution engine.  
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Table 2.2  CISC (x86) application characterization 

 

DYNAMIC 
INSTRUCTION 

COUNT 
EXPANSION

STATIC FIXED 
32-BIT

STATIC  
16 / 32 - BIT 
 RISC CODE   RISC CODE 

EXPANSION EXPANSION 

 

SPEC 2000 CPU integer 
164.gzip 1.54 1.63 1.18  
175.vpr 1.44 2.06 1.39  
176.gcc 1.34 1.81 1.32  
181.mcf 1.40 1.65 1.21  
186.crafty 1.50 1.64 1.23  
197.parser 1.42 2.08 1.42  
252.eon 1.56 2.21 1.47  
253.perlbmk 1.53 1.84 1.29  
254.gap 1.31 1.88 1.32  
255.vortex 1.50 2.11 1.41  
256.bzip2 1.46 1.79 1.33  
300.twolf 1.26 1.65 1.18  
SPEC2000 average 1.44 1.86 1.31  

WinStone2004 business suites 
Access 1.54 2.06 1.41  
Excel  1.60 2.02 1.39  
Front Page 1.62 2.29 1.52  
Internet Explorer 1.58 2.45 1.72  
Norton Anti-virus 1.39 1.57 1.20  
Outlook 1.56 1.96 1.35  
Power Point 1.22 1.58 1.18  
Project 1.67 2.35 1.56  
Win-zip 1.18 1.76 1.23  
Word 1.61 1.79 1.29  
Winstone average  1.50 1.98 1.39  

 
 

Table 2.2 lists some basic characterization of the x86 applications benchmarked. The first data 

column shows that on average, each x86 instruction cracks into 1.4 ~ 1.5 RISC-style micro-ops. This 

dynamic micro-op expansion not only stresses instruction decode/rename/issue logic (and add 

overhead), but also incur unnecessary inter-instruction communication among the micro-ops that 

stresses the wire-intensive operand bypass network. 
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Meanwhile, the CISC-to-RISC decoders are already complex logic because the x86 ISA tends 

to encode multiple operations without strict limits on instruction length. The advantage of this x86 

property is concise instruction encoding and consequently a smaller code footprint. The disadvantage 

is the complexity that hardware decoders must handle for identifying variable-length instructions and 

cracking CISC instructions into RISC micro-ops. Multiple operations inside a single CISC instruction 

need to be isolated and reformatted for the new microarchitecture.  

To be more specific, the length of x86 instructions varies from one byte to seventeen bytes.  

Figure 2.3 shows that 99.6+% dynamic x86 instructions are less than eight bytes long.   Instructions 

more than eleven bytes are very rare.  The average x86 instruction length is three bytes or fewer.     

However, the wide range of instruction lengths makes the x86 decoders much more complex than 

RISC decoders.  For a typical x86 decoder design, the critical path of the decoder circuit is to deter-

mine boundaries among the x86 instruction bytes.  Moreover, the CISC-to-RISC cracking further 

increases CISC decoding complexity because it needs additional decode stage(s) to decompose CISC 

instructions into micro-ops.   
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On the other hand, by combining these two factors (variable-length instructions and CISC-to-

RISC cracking ratio), it is clear that the x86 code density is nearly twice as good as typical RISC 

ISAs.  The second data column of Table 2.2 verifies this observation with benchmark characterization 

data.  The third column of Table 2.2 illustrates that a RISC ISA can narrow this code density gap by 

adopting a 16/32-bit instruction encoding scheme. This limited variable length encoding ISA repre-

sents a trade-off between code density and decoder complexity that has long been implemented in 

early RISC designs such as the CDC and Cray Research machines [19, 32, 33, 34, 107, 121].  

Figure 2.3   Dynamic x86 instruction length distribution 

For a brief summary of the major CISC (x86) specific challenges, we observe that an efficient 

microarchitecture design needs to address the suboptimal internal micro-op code and to balance code 
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density with decoder complexity.   Complex decoders not only complicate circuit design, but also 

consume power.   

An additional concern regarding an architected ISA such as the x86 is the presence of “legacy” 

features. For the x86 instruction set [67, 68, 69] new instructions have been being added to better 

support graphics/multimedia and ISA virtualization, and many other features have become practically 

obsolete. For example, the virtual-8086 mode and the x86 BCD (binary coded decimal) instructions 

are rarely used in modern software. The x86 segmented memory model is largely unused and the 

segment registers are disabled altogether in the recent x86 64-bit mode [6~10] (Except FS and GS 

that are used as essentially additional memory address registers).  Conventional processor designs 

have to handle all these legacy features of the ISA.  A new efficient design should provide a solution 

such that obsolete features will not complicate processor design. 

 

2.4 Overview of the Baseline x86vm Design 
 A preliminary co-designed x86 VM is developed to serve as the baseline design for investigat-

ing high performance dynamic binary translation. The two major VM components, the hardware 

microarchitecture and the software dynamic binary translator, are both modeled in the x86vm frame-

work.  As in most state-of-the-art co-designed VM systems, the baseline VM features very little 

hardware support for accelerating and enhancing dynamic binary translation.  Further details and 

enhancements to the baseline VM design will be systematically discussed in the next three chapters 

that address different VM design aspects.  
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2.4.1 Fusible Implementation ISA 
The internal fusible implementation ISA is essentially an enhanced RISC instruction set. The 

ISA has the following architected state:  

 The program counter.  

 32 general-purpose registers, R0 through R31, each 64-bit wide. Reads to R31 always return a 

zero value and writes to R31 have no effect on the architected state.  

 32 FP/media registers, F0 through F31, each 128-bit wide. All x86 state for floating-point and 

multimedia extensions, MMX / SSE(1,2,3) SIMD state, can be mapped to the F registers.  

 All x86 condition code and flag registers (x86 EFLAGS and FP/media status registers) are 

supported directly.  

 System-level and special registers that are necessary for efficient x86 OS support.   
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The fusible ISA instruction formats are illustrated in Figure 2.4.  The instruction set adopts 

RISC-style micro-ops that can support the x86 instruction set efficiently. The fusible micro-ops are 

encoded in either 32-bit or 16-bit formats. Using a 16/32-bit instruction format is not essential.  

However, as shown in Table 2.2, it provides a denser encoding of translated instructions and better 

instruction-fetch performance than a 32-bit only format.  The 32-bit formats are the “kernel” of the 

ISA and encode three register operands and/or an immediate value. The 16-bit formats employ an 

x86-style accumulator-based 2-operand encoding in which one of the operands is both a source and a 

destination. This encoding is especially efficient for micro-ops that are cracked from x86 instructions. 

All general-purpose register designators (R and F registers) are 5-bit in the instruction set. All x86 

exceptions and interrupts are mapped directly onto the fusible ISA. 

Figure 2.4   Fusible ISA instruction formats 
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A special feature of the fusible ISA is that a pair of dependent micro-ops can be fused into a 

single macro-op. The first bit of each micro-op indicates whether it should be fused with the immedi-

ately following micro-op to form a macro-op.  We define the head of a macro-op as the first micro-op 

in the pair, and define the tail as the second, dependent micro-op which consumes the value produced 

by the head.  To reduce pipeline complexity, e.g., in the renaming and scheduling stages, we only 

allow fusing of dependent micro-op pairs that have a combined total of two or fewer unique source 

register-operands. This ensures that the fused macro-ops can be easily handled by conventional 

instruction rename/issue logic and an execution engine featuring collapsed 3-1 ALU(s). 

To support x86 address calculations efficiently, the fusible instruction set adopts the following 

addressing modes to match the important x86 addressing modes. 

 Register indirect addressing: mem[register];  

 Register displacement addressing:   mem[register + 11bit_displacement], and 

 Register indexing addressing: mem[Ra + (Rb << shmt)]. This mode takes a 3-register operand 

format and a shift amount, from 0 to 3 as used in the x86.  

The fusible ISA assumes a flat, page-based virtual memory model. This memory model is the 

dominant virtual memory model implemented in most modern operating system kernels, including 

those running on current x86 processors.  Legacy segment-based virtual memory can be emulated in 

the fusible ISA via software if necessary.  

In the instruction formats shown in Figure 2.4, opcode and immediate fields are adjacent to 

each other to highlight a potential trade-off of the field lengths; i.e. the opcode space can be increased 

at the expense of the immediate field and vice versa.    
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2.4.2 Co-Designed VM Software: the VMM 
As observed in Section 2.3, cracking x86 instructions into micro-ops in a context-free manner 

simplifies the implementation of many complex x86 instructions; it also leads to significantly more 

micro-ops to be managed by the pipeline stages.  Therefore, fusing some of these micro-ops improves 

pipeline efficiency and performance because fused macro-ops collapse the dataflow graph for better 

ILP and reduce unnecessary inter-instruction communication and dynamic instruction management. 

Hence, the major task of our co-designed dynamic binary translation software is to translate and 

optimize frequently used, “hotspot” blocks of x86 instructions via macro-op fusing.  Hot x86 instruc-

tions are first collected as hot superblocks and then are “cracked” into micro-ops. Dependent micro-

op pairs are then located, re-ordered, and fused into macro-ops. The straightened, translated, and 

optimized code for a superblock is placed in a concealed, non-architected area of main memory -- the 

code cache. 

As is evident in existing designs, finding x86 instruction boundaries and then cracking individ-

ual x86 instructions into micro-ops is lightweight enough that it can be performed with hardware 

alone. However, our translation algorithm not only translates, but also finds critical micro-op pairs for 

fusing and potentially performs other dynamic optimizations. This requires an overall analysis of 

groups of micro-ops, re-ordering of micro-ops, and fusing of pairs of operations taken from different 

x86 instructions.  To keep our x86 processor design complexity-effective, we employ software 

translation to perform runtime hotspot optimization.   

We note that the native x86 instruction set already contains what are essentially fused opera-

tions. However, our dynamic binary translator often fuses micro-op pairs across x86 instruction 

boundaries and in different combinations than in the original x86 code.  To achieve the goal of 

streamlining the generated native code for the macro-op execution pipeline, our fusing algorithms 
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fuse pairs of operations that are not permitted by the x86 instruction set; for example the pairing of 

two ALU operations and the fusing of condition test instructions with conditional branches.  

Although it is not done here, it is important to note that many other runtime optimizations can 

be performed by the dynamic translation software, e.g. performing common sub-expression elimina-

tion and the Pentium M’s “stack engine” [16, 51] cost-effectively in software, or even conducting 

“SIMDification” [2] to exploit SIMD functional units.   

2.4.3 Macro-Op Execution Microarchitecture  
The co-designed microarchitecture for the baseline VM has the same basic pipeline stages as a 

conventional x86 out-of-order superscalar processor (Figure 2.5a). Consequently it inherits most of 

the proven benefits of dynamic superscalar designs. The key difference is that the proposed macro-op 

execution microarchitecture can process instructions at the coarser granularity of fused macro-ops 

throughout the entire pipeline.  

Several unique features make the co-designed microarchitecture an enhanced superscalar by 

targeting several critical pipeline stages for superscalar performance. For example, instruction issue 

logic at the instruction scheduler stage(s), result forwarding network at the execution stage, and code 

delivery at the instruction fetch stage.  The issue stage is especially difficult as it considers the 

dependences between instructions and needs to wakeup and select instructions.  Both wakeup and 

select are complex operations and they need to be performed in a single cycle [102, 118] to issue 

back-to-back dependent instructions.  

For the DBT optimized macro-op code, fused dependent micro-op pairs are placed in adjacent 

memory locations in the code cache and are identified via the special “fusible” bit.  After they are 

fetched, the two fusible micro-ops are immediately aligned together and fused.  From then on, macro-

ops are processed throughout the pipeline as single units (Figure 2.5b).    
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(b) The macro-op execution overview 

Figure 2.5   The macro-op execution microarchitecture  

Macro-op fusing algorithm fuses dependent micro-ops at a comparable CISC granularity of the 

original x86 instructions. However, fused macro-ops are more streamlined and look like RISC 

operations to the pipeline.  By processing fused micro-op pairs as a unit, processor resources such as 

register ports and instruction dispatch/tracking logic are better utilized and/or reduced.   Perhaps more 

importantly, the dependent micro-ops in a fused pair share a single issue queue slot and are awakened 

and selected for issue as a single entity. The number of issue window slots and issue width can be 

either effectively increased for better ILP extraction or can be physically reduced for simplicity 

without affecting performance.   

After fusing, there are very few isolated single-cycle micro-ops that generate register results. 

Consequently, key pipeline stages can be designed as if the minimum instruction latency is two 

cycles. The instruction issue stage in conventional designs is especially complex for issuing single-
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cycle back-to-back instructions.  In our proposed x86 processor VM design, instruction issue can be 

pipelined in two stages, simply and without performance loss.  Another critical stage is the ALU.  In 

our design, two dependent ALU micro-ops in a macro-op can be executed in a single cycle by using a 

combination of a collapsed three-input ALU [92, 106, 71] and a conventional two-input ALU.  Then, 

there is no need for an expensive ALU-to-ALU operand forwarding network. Rather, there is an 

entire second cycle where results can be written back to the registers before they are needed by 

dependent operations.  

We improve the pipeline complexity-efficiency in a few ways. (1) Fused macro-ops reduce the 

number of individual entities (instructions) that must be handled in each pipeline stage. (2) The 

instruction fusing algorithm strives for macro-op pairs where the first (head) instruction of the pair is 

a single-cycle operation. This dramatically reduces the criticality of single-cycle issue and ALU 

operations.  

There are other ways to simplify CISC microarchitecture in a co-designed VM implementation. 

For example, unused legacy features in the architected ISA can be largely (or entirely) emulated by 

software.  A simple microarchitecture reduces design risks and cost, and promises a shorter time-to-

market.  While it is true that the translation software must be validated for correctness, this translation 

software does not require physical design checking, does not require circuit timing verification, and if 

a bug is discovered late in the design process, it does not require re-spinning the silicon. 
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2.5 Related Work on x86 Simulation and Emulation 
There are many x86 simulation and emulation systems.  However, most of these systems are 

either proprietary infrastructure that are not available for public access, or are released only in binary 

format that can only support limited exploration for the x86 design space.  For example, the Virtu-

Tech SIMICS [91] supports full system x86 emulation and some limited timing simulation; the AMD 

SimNow! [112] is another full system x86 simulator running under GNU/Linux.  The simulated 

system runs both 64-bit and 32-bit x86 OS and applications.   

Fortunately, BOCHS [84] is an open-source x86 emulation project. The x86 instruction decode 

and instruction semantic routines from BOCHS 2.2 are extracted and fully customized to decode and 

crack x86 instructions into our own designed implementation instruction set.  The customized source 

code is integrated into our x86vm framework (Figure 2.1) for full flexibility and support for the 

desired simulations and experiments.    

Dynamic optimization for x86 is an active research topic.   For example, an early version of 

rePLay [104] and recently the Intel PARROT [2] explored using hardware to detect and optimize hot 

x86 code sequences.  The technical details of these related projects will be discussed in Chapter 5 

when they are compared with our hardware assists for DBT.   Merten et al [98] proposed a framework 

for detecting hot x86 code with BBB (Branch Behavior Buffer) and invoking software handlers to 

optimize x86 code.   However, because the generated code is still in the x86 ISA, the internal sub-

optimal code issue is not addressed.  

The x86vm features a two-stage binary translation system, simple basic block translation for all 

code when it is first executed and superblock translation for hot superblock optimization. The Intel 

IA-32 EL [15] employs a similar translation framework.  However, there are many variations to this 

scheme. For example, IBM DAISY/BOA [3, 41, 42] and Transmeta Code Morphing Software (CMS) 
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[36] use an interpreter before invoking binary translators for more frequently executed code. The 

Transmeta Efficeon CMS features a four-stage translation framework [83] that uses interpretation to 

filter out code executed less than (about) 50 times. More frequent code invokes advanced translators 

based on its execution frequency.  

The primary translation unit adopted in x86vm is the superblock [65]. A superblock is a se-

quence of basic blocks along certain execution path. It is amenable for translation dataflow analysis 

because of its single-entry and multi-exit property.  Superblocks are adopted for translation units in 

many systems, such as Dynamo(RIO) [22], IA-32 EL [15].  However, some translation/compilation 

systems for VLIW machines supporting predication use tree regions [3, 41, 42] or other units larger 

than basic blocks as the translation unit.  
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Chapter 3  

Modeling Dynamic Binary Translation Systems  

The essence of the co-designed VM paradigm is synergetic hardware and software that imple-

ment an architected ISA.  In contrast,  conventional processor designs rely solely on hardware 

resources to provide the interface to conventional software.  Therefore, it is critical to explore the 

dynamics of co-designed hardware and software for a clear understanding of VM runtime behavior.  

The achieved insight should help to improve the efficiency and complexity effectiveness of VM 

system designs.  However, there are few publications that explicitly address the dynamics of transla-

tion-based co-designed VM systems.   

In this chapter, we first develop an analytical model for staged translation systems from a 

memory hierarchy perspective.  This model captures the first-order quantitative relationships between 

the major components in a VM system.  Then we use this model to analyze VM runtime behavior and 

strive for an overall translation strategy that balances the translation assignments to different parts of 

the VM translation system.   
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3.1 Model Assumptions and Notation 
As discussed in Section 2.2 (evaluation methodology), it is easier to appreciate a new design by 

comparing it with the current best designs.  Therefore, we are especially interested in comparing the 

following two processor design paradigms.  

 A reference superscalar paradigm -- the most successful general-purpose microarchitecture 

scheme in current processor designs.    It dominates all the server, desktop, and laptop market 

and serves as our baseline. In conventional superscalar processors, limited translation is per-

formed in the pipeline front-end every time an instruction is fetched.  

 The co-designed VM paradigm -- A hardware/software co-designed scheme that relies on the 

software dynamic translator to map instructions from the source architected ISA (x86) into the 

target implementation ISA.     The hardware engine then can better realize microarchitecture 

innovations.  

Note that, among the many dynamic binary translation/optimizations systems and proposals, 

we model systems that use software translation and code caching.  In these systems, runtime software 

translation overhead is a major concern.  The size of code cache in a co-designed VM system is 

typically configured from 10MB to 100MB out of the 512MB to multi-GB main memory size. For 

example, the Transmeta CMS [36, 82] allocates 16MB for its laptop or mobile device workloads; the 

IBM DAISY/BOA VMM [3, 41, 42] allocates 100+MB for server workloads.  

There are also dynamic binary translation/optimization proposals that incur negligible perform-

ance overhead by investing intensive hardware resources for hotspot optimization. These proposals, 

for example, instruction path coprocessor [25, 26], rePLay [45, 104], and PARROT [2], are mainly 

designed for dynamic optimizations on the implementation ISA.  They do not address code that is not 
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in hotspots. Additionally, the generated translations are placed in a small on-chip trace cache or frame 

cache.  Therefore, these proposals are not designed for conducting cost-effective,  cross-paradigm 

translations that we are particularly interested in.  

The software binary translation that we consider can be either modeled as a whole, i.e. a black 

box approach, or modeled as a structured object, i.e. a white box approach that distinguishes the 

major components inside. The specific modeling approach selected for a circumstance depends on the 

desired level of abstraction.   

In our x86vm framework, the DBT system of the VM scheme may simply map one basic block 

at a time in a straightforward way (BBT) for fast startup, or it may perform optimizations on hot 

superblocks (SBT) for superior steady-state performance. A simple and straightforward way to model 

the runtime translation overhead is to unify the binary translation behavior as memory hierarchy miss 

behavior. For example, an invocation of the DBT translation is considered as a miss in the code cache 

and the miss event handling involves the VM translator. From such a memory hierarchy perspective, 

we introduce the following notation to model a staged translation system.  

MDBT denotes the total number of static instructions that are translated by the DBT system. For 

the x86vm framework, MBBT is used to represent the number of static instructions touched by a 

dynamic program execution that hence need to be translated first by BBT.  And, MSBT represents the 

number of static instructions that are identified as hotspot and thus are optimized by SBT. This 

notation is very similar for memory misses.  Assume I instructions have been executed, then the miss 

rate is  mlev = Mlev/I  where the level, lev, can be BBT, SBT or DBT, just as caches, main memory or 

disk in the memory hierarchy.  

  ΔDBT stands for the average translation overhead per (translated) architected ISA instruction. 

In particular, symbols ΔBBT and ΔSBT represent per x86 instruction translation overhead for BBT and 
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SBT, respectively.  The translation overhead can be either measured in terms of cycles (time) or in 

terms of the number of implementation ISA instructions in which the translators are coded.   In this 

thesis, we use the measure in terms of implementation ISA instructions. Sometimes for comparison 

purposes, this number is converted to the equivalent number of architected ISA instructions.  

 

3.2 Performance Dynamics of Translation-Based VM Systems 
In a conventional system, when a program is to execute, its binary is first loaded from disk into 

main memory. Then, the program starts execution.  As it executes, instructions move up and down the 

memory hierarchy, based on usage.  Instructions are eventually distributed among the levels of cache, 

main memory, and disk.    

In the co-designed VM approach based on software translation and code caching, the program 

binary (containing the architected ISA instructions) is also first loaded from disk into main memory, 

just as in a conventional design.  However, the architected ISA instructions must be translated to the 

implementation ISA instructions before they can be executed.  The translated code is held in the code 

cache for reuse until it is evicted to make room for other blocks of translated code. Any evicted 

translation must then be re-translated and re-optimized if it becomes active again.  As a program 

executes, the translated implementation ISA instructions distribute themselves in the cache hierarchy 

in the same way as architected ISA instructions in a conventional system.   

To simplify the analysis for co-designed VM systems, especially regarding the effects of trans-

lation, we identify four primary scenarios. 
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1. Disk startup.   This scenario occurs for initial program startup or reloading modules / tasks that 

were swapped out – the binary needs to be loaded from disk for execution.  After memory is 

loaded, execution proceeds according to scenario 2 below.  That is, scenario 1 is the same as 

scenario 2 below, but with a disk load added at the beginning.   

2. Memory startup.  This scenario models major context switches (or program phase changes) – If 

a context switch is of long duration or there is a major program phase change to code that has 

never been executed (or has not been executed for a very long time), then the required trans-

lated code may not exist in the code cache. However, the architected ISA code is in main 

memory, and will need to be (re)translated before it can be executed.  This translation time is 

an additional VM startup overhead which has a negative effect on performance.  

3. Code cache startup / transient.   This scenario models the situation that occurs after a short 

context switch or short duration program phase change. The translated implementation ISA 

code is still available in the main memory code cache, but not in the other levels of the cache 

hierarchy.  To resume execution after the context switch (or return to the previous program 

phase), there are cache misses as instructions are fetched from main memory again. However, 

there are no instruction translations.   

4. Steady state.  This scenario models the situation where all the instructions in the current 

working set have been translated and placed properly in the cache hierarchy. The processor is 

running at “full” speed.   

Clearly, scenario 4 steady state is the desired case for co-designed VM systems using DBT. 

Performance is determined mainly by the processor architecture, and the co-designed VM fully 

achieves its intended benefits due to architecture innovation.     
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In scenario 3 code cache transient, performance is similar in both the conventional processor 

and VM designs as both schemes fetch instructions through the cache hierarchy, and no translation is 

required in a co-designed VM.  Performance differences are mainly caused by second-order cache 

effects.  For example, the translated code will likely have a larger footprint in main memory, how-

ever, the code restructuring for superblock translation will lead to better temporal locality and more 

efficient instruction fetching.  

In contrast, scenario 2 memory startup is a bad case and the one where VM startup overhead is 

most exposed.  The translation from architected ISA code (in memory) into implementation ISA code 

(in the code cache) is required and causes the biggest negative performance impact for dynamic 

binary translation when compared with a conventional superscalar design.   

As noted earlier, scenario 1 disk startup is similar to scenario 2,   with the added disk access 

delay.  The performance effects of loading from disk are the same in both the conventional and VM 

systems.  Moreover, the disk load time, lasting many milliseconds, will be the dominant part of this 

scenario. The additional startup time caused by translation will be less apparent and the relative 

slowdown will be much less in scenario 1 than in scenario 2.    

Based on the above reasoning, it is clear that performance analysis of VM system dynamics 

should focus on scenarios 2 and 4, i.e. steady-state performance and memory startup performance 

where VM-specific translation benefit and overhead are prominent.   

The steady state performance is mainly determined by the effectiveness of the DBT translation 

algorithms and the collaboration between co-designed hardware processor and translated/native 

software code. Chapter 4 addresses the translation algorithms and Chapter 6 emphasizes the collabo-

ration and integration aspects for VM systems.   
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For VM-specific performance modeling and translation strategy research, translation-incurred 

transient behavior during VM startup phase is the key and will be focused on in this chapter.  Particu-

larly, we emphasize the memory startup scenario, that is, when we analyze startup performance, we 

start with a program binary already loaded from disk, but with the caches empty, and then track 

startup performance as translation and optimization are performed concurrently with execution.  

A set of simulations are conducted for the memory startup scenario to compare performance 

between the reference superscalar processor and two co-designed VM systems that rely on software 

for DBT.  The first staged translation system uses BBT followed by SBT, and the second uses 

interpretation followed by SBT.   All systems are modeled with the x86vm framework and the specific 

configurations are the same as in Table 5.4 later in Section 5.5.  The simulations start with empty 

caches and run 500-million x86-instruction traces to track performance.  The traces are collected from 

the ten Windows applications in the Winstone2004 Business suite.  The total simulation cycles range 

from 333-million to 923-million cycles for the reference superscalar.  

The simulation results are averaged for the traces and graphed in Figure 3.1.  IPC performance 

is normalized with respect to the steady state reference superscalar IPC performance. The horizontal 

line across the top of the graph shows the VM steady state IPC performance gain (8% for the Win-

dows benchmarks).   

The x-axis shows execution time in cycles on logarithmic scale.  The y-axis shows the har-

monic mean of their aggregate IPC, i.e. the total instructions executed up to that point divided by the 

total time.  As mentioned, at a given point in time, the aggregate IPC reflect the total number of 

instructions executed (on a linear scale), making it easy to visualize the relative overall performance 

up to that point in time. 
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Figure 3.1   VM startup performance compared with a conventional x86 processor  

The breakeven point (as used in Chapter 1 for startup overhead) is the time it takes a  co-

designed VM to execute the same number of instructions as the reference superscalar processor.  This 

is opposed to the point where the instantaneous IPCs are equal, which happens much earlier.  The 

crossover, or breakeven, point occurs later than 100-million cycles for the baseline VM system using 

staged BBT followed by SBT.  And this co-designed VM system barely reaches half the steady state 

performance gains (4%) before the traces finish.   

For the co-designed VM using interpretation followed by SBT, the startup performance is 

much worse.  The hotspot threshold for switching from interpretation to SBT is 25 (as derived using 

the method described below in Section 3.3).  After finishing the 500-million instruction traces, the 

aggregate performance is only half that of a conventional superscalar processor.   
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Clearly, software DBT runtime translation overhead affects VM startup performance when 

compared with a conventional superscalar processor design, especially for a startup periods less than 

100-million cycles (or 50 milliseconds in a 2 GHz processor core).  At the one-million-cycle point, 

the baseline VM system has executed only one fourth the instructions of the reference conventional 

superscalar implementation. 

3.3 Performance Modeling and Strategy for Staged Translation  
In a two-stage translation system consisting of BBT and SBT, the emulation starts with simple 

basic block translation.  Dynamic profiling is used to detect hot code regions.  Once a region of code 

is found to be “hot”, it is re-organized into superblock(s) and is optimized.  Therefore, translation 

overhead is a function of two major items. (1) The number of static instructions touched by a dynamic 

program execution that therefore need to be translated first by BBT, i.e. MBBT.  (2) The number of 

static instructions that are identified as hotspot and thus are optimized by SBT, i.e. MSBT.  The 

symbols ΔBBT and ΔSBT are used to represent per x86 instruction translation overhead for BBT and SBT, 

respectively. Then, for such a system, the VM translation overhead is:  

Translation overhead  =  MBBT * ΔBBT  +  MSBT  * ΔSBT       (Eq.1) 

Clearly, MBBT is a basic characteristic of the program’s execution and cannot be changed. Thus, 

a feasible way to reduce BBT overhead is to reduce ΔBBT, and for this goal, we will propose hardware 

assists in Chapter 5.  Regarding the SBT component, we argue that good hotspot optimizations are 

complex and need the flexibility advantages of software.  A hardware implemented optimizer (at least 

for the optimizations we consider) would be both complex and expensive.  Chapter 4 will strive for 

both efficient and effective translation algorithms.  Fortunately, for most applications, the hotspot 

code is a small fraction of the total static instructions. Furthermore, the hotspot size, MSBT, is sensitive 
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to the hot threshold setting.  Therefore, we need to explore a balanced trade-off regarding the hot 

threshold setting, which not only reduces SBT overhead by detecting true hotspots, but also collects 

optimized hotspot performance benefits via good hotspot code coverage.   

Our evaluation of this trade-off uses a specialized version of the model proposed for the Jikes 

RVM java virtual machine [11].  Let p be the speedup an optimized superblock can achieve over the 

simple basic block code. Also let N be the number of times a given instruction executes and let tb be 

the per instruction execution time for code generated by BBT. Then, to break even, the following 

equation holds. (This assumes that the optimizer is written in optimized code and its overhead ΔSBT is 

measured in terms of architected ISA instructions.) 

N * tb = (N + ΔSBT) * ( tb  / p)  ⇒  N = ΔSBT / (p - 1)     (Eq.2) 

That is, the breakeven point occurs when the number of times an instruction executes is equal 

to the translation overhead divided by the performance improvement.  In practice, at a given point in 

time, we do not know how many times an instruction will execute in the future, however. So, this 

equation cannot be applied in an a priori fashion. In the Jikes system, it is assumed that if an instruc-

tion has already been executed N times, then it will be executed at least N times more. Hence, the 

value N as given in Equation 2 is used as the threshold value.  

In our VM scheme, we set the hot threshold that triggers SBT translation based on Equation 2 

and benchmark characteristics.  To calculate the hot threshold based on the equation, we first deter-

mine the values of the equation parameters.  For our VM system, we have measured ΔSBT to be 1152   

x86 instructions (approximately 1200) and p is 1.15 ~ 1.2 for the WinStone2004 traces. That is, SBT 

optimized code runs 15 to 20 percent faster than the code generated by BBT.  Then to break even, 

Equation 2 suggests that N should be at least 1200/0.15 = 8000 for WinStone2004-like workloads.   
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Figure 3.2   Winstone2004 instruction execution frequency profile  

(100M x86 instruction traces) 

To illustrate the reasoning and the motivation for a relatively high hotspot threshold, we have 

conducted benchmark characterization for the Windows applications.  We used data averaged over 

the traces of length 100-million x86 instructions collected from the ten Winstone2004 Business suite 

applications.  The x-axis of Figure 3.2 is instruction counts (frequency).  The left y-axis shows the 

number of static x86 instructions that are executed for the number of times marked on the x-axis. The 

threshold execution count (8000) is marked with a red vertical line. By using the left y-axis, we see 

that only 3K (determined by adding the data points of the static instruction curve that are to the right 

of the hot threshold line) of the static instructions have exceeded the hotspot threshold at the time 100 

million instructions have been executed.  It is clear from the figure that, for these benchmarks, only a 

small fraction of executed static instructions are classified as being in hotspots. 
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The right y-axis shows the distribution function of total dynamic x86 instructions. For exam-

ple, the peak point of the distribution curve shows that 30+% of all dynamic instructions execute 

more than 10K times, but less than 100K times.  This curve rises and then falls off because the total 

dynamic instruction count for the simulations is 100 million. If the programs run longer than 100 

million instructions, then this curve would continue to rise and the peak would shift to the right 

toward higher execution frequency.   It is clear from the figure that for a hot threshold on the order of 

thousands, the hotspot coverage (the percentage of instructions executed from the optimized hotspot 

code) is fairly modest for these short startup traces. However, the hotspot code coverage will be 

significantly improved once benchmarks are run much longer as in most realistic cases.  For example, 

the hotspot coverage in these short traces is about 63%. The coverage will increase to 75+% for 500M 

instruction runs. And real applications run tri/billions of instructions.  

Returning now to Equation 1, the average value of MBBT is 150K static x86 instructions (this 

can be determined by adding the data points of the static instruction curve) and the average value of 

MSBT is 3K (adding the data points of the static instruction curve that are to the right of the hot 

threshold line).   Assuming ΔBBT = 105 native instructions (as measured in our baseline VM system)  

and ΔSBT = 1674 native instructions (equivalent to the 1152   x86 instructions above), then we infer  

that the BBT component is 105 * 150K = 15.75M native instructions, or equivalent to 10.86M x86 

instructions,  and the SBT component is 1674 * 3K = 5.02M native instructions, or equivalent to 

3.46M x86 instructions. In other words, based on the fact that 100M workload x86 instructions are 

executed, the analytical model projects that the BBT overhead is roughly 10% and the SBT overhead 

is about 3%.   Therefore, in our VM system, BBT causes the major translation overhead, and this is 

the overhead Chapter 5 will tackle with hardware accelerators. Also because BBT translation is a 

simpler operation, it offers more opportunities for hardware assists.   
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It is important to note that an advantage of the co-designed VM paradigm is its synergetic 

hardware/software collaboration. This unique capability shifts the trade-off for the translation 

strategy.  And it is not always feasible to achieve this capability in VM systems that aim at porting 

user-mode software across different platforms. For example, the Intel IA-32 EL instruments extra 

code in BBT translations to collect program execution profile and apply certain translation rules to 

guarantee precise state can be easily recovered should an exception occur.  This profiling code and 

rules cause significant extra overhead and slow down the BBT translations for emulation speed.   In 

contract, a co-designed VM system employs cost-effective hardware assists to detect program hotspot 

and to accelerate the critical part of DBT translation.  BBT translations in co-designed VM can be 

more efficient and the hotspot optimization overhead can thus be reduced by translating only confi-

dent hotspots. Once hardware assists for BBT are deployed, BBT translation becomes much cheaper 

and flushing the code cache for BBT becomes inexpensive. Then, using interpreters to filter out code 

that executes very infrequently (less than 20 times) becomes less attractive (Perhaps, Transmeta uses 

the first stage of interpretation to filter out the leftmost data point(s) in Figure 3.2, which stands for 

instructions that execute less than 10 times but take up a big section of the code cache).  

In a co-designed VM system, the overall translation strategy strives for (1) balanced translation 

assignments among the major components and (2) an optimal division between the co-designed 

hardware and software.  In our x86vm framework, the translation strategy for the two-stage translation 

system is based on the analytical model (Equations 1 and 2).  Specifically, our translation strategy 

determines the hotspot threshold based on Equation 2 and application characteristics. This strategy 

also suggests that hardware primitives should significantly accelerate BBT translation, which is on 

the critical execution path.   
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3.4 Evaluation of the Translation Modeling and Strategy  
The analytical model that estimates DBT translation overhead (Equation 1) is evaluated by 

comparing its projections with performance simulations.  The simulations are conducted for the 

baseline VM system running the Windows application traces.  Figure 3.3 shows the runtime overhead 

for both the BBT and the SBT relative to the entire execution time. Clearly, BBT translation overhead 

is more critical and is measured at 9.6%, close to the 10% prediction based on the analytical model. 

The SBT hotspot optimization overhead is also fairly significant and is measured at 3.4%, close to the 

3% projected by the equation.   

Furthermore, the BBT translation must be performed on the critical execution path because in 

our VM system there is no other way to emulate a piece of code that is executed for the first time. On 

the other hand, the SBT optimization is relatively more flexible because the BBT translation is still 

available.  This flexibility leads to more opportunities to hide SBT optimization overhead.   
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Figure 3.3   BBT and SBT overhead via simulation  
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Figure 3.3 corroborates the observation derived from Figure 3.1 that runtime overhead affects 

the VM startup performance significantly; it can not be simply assumed to be negligible at least for 

the applications that we enumerated in Chapter 1.  

The analytical model that estimates the appropriate thresholds (Equation 2) for triggering more 

advanced translation stages is evaluated by observing how the VM system performance varies as the 

hot threshold changes around the ranges predicted by the equation.  Thresholds too low will cause 

excessive translation overhead while thresholds too high reduce the hotspot code coverage and thus 

the optimization benefits.  Typically, as the hot threshold increases, the hotspot size decreases more 

quickly than the hotspot coverage.  

Figure 3.4 plots the VM IPC performance versus hot threshold trend for each benchmark traces 

from the WinStone2004. As the hot threshold increases from 2K to the optimal point (8K, determined 
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Figure 3.4   VM performance trend versus hot threshold settings  
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by Equation 2), the VM performance clearly increases. After the optimal point, the VM performance 

gradually decreases.   

Figure 3.4 verifies that the analytical model calculates a fairly balanced hot threshold based on 

averages for the whole benchmark suite.  However, the best performance point for each specific 

benchmark is different. Perhaps, this suggests an adaptive threshold for each application or even each 

program phase for optimal performance and efficiency. 

An assumption in the previous discussion is that the different memory hierarchy behavior (VM 

versus baseline superscalar) causes only second-order performance effects. This assumption is the 

basis for the simple VM system analytical model, which only models translation behavior.  Although 

this assumption matches common sense, supportive data and analysis will now be given to validate 

this assumption.  

Compared with a conventional superscalar processor, the co-designed VM system has three 

major performance implications.  

1. The VM has a better steady state performance (clock speed and/or IPC, CPI. Only the IPC 

advantage is shown in Figure 3.1).  The better performance comes from the implementation 

ISA and microarchitecture innovations.  

2. The VM pays the extra translation overhead, which is modeled as: MDBT(i)*ΔDBT.  

3. The VM has a different memory hierarchy behavior, mainly for instructions. The memory 

system behavior can be modeled as ML2(i)*ΔL2 + Mmem(i)*Δmem.  

Similar to the notation for translation modeling, ML2 and Mmem are the number of instruction 

fetch misses to L2 cache and main memory respectively.  ΔL2  and Δmem represent the miss penalty for 

a miss to L2 cache and main memory accordingly.  For a specific memory hierarchy level, the 
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  Table 3.1   Benchmark Characterization: miss events per million x86 instructions  
REFERENCE  

SS : ML2 
REFERENCE 

SS : MMEM WINSTONE2004  

instruction miss penalty tends to be nearly constant [73] and is closely related to the access latency for 

the memory level that services the miss.  Typically, the access latency is easily determined via 

simulations.  

We collect data to compare the last two implications and determine if memory behavior differ-

ence causes only second-order effects.  Table 1 shows miss rates for the listed benchmarks running 

100M x86-instruction traces.  The simulations are configured similar to Figure 3.1 and 3.2.  

Two factors affect the VM system memory hierarchy behavior, (1) code straightening via hot 

superblock formation for hotspot optimization, (2) code expansion and translator footprint. Because 

we translate x86 instructions into a RISC-style ISA, there is some code expansion. In general, the 

16/32b fusible ISA binary has a 30~40% code expansion over the 32-bit x86 binaries. Table 3.1 

shows that the VM system causes more instruction cache misses to the L2 cache, 0.0013 more misses 

per x86 instruction. Assuming a typical L2 cache latency of 10-cycle, the extra instruction cache 

misses lead to a 0.013 CPI adder for the VM system. In real processors, some of the L1 misses can be 

tolerated. The latency to the DRAM main memory is much longer, well over 100-cycles. The VM 

system causes 0.000032 more misses to memory per x86 instruction. Therefore, assuming a 200-cycle 

VM: MBBT VM: MHST VM: ML2 VM: MC$ 

Access 923 68.4 9802 109 12389 146
Excel  605 38.6 15760 1191 15402 1368
Front Page 2791 51.4 5668 413 3956 338
Internet Explorer 3872 29.8 25612 987 16191 688
Norton Anti-virus 57 12.4 8.1 4.2 20.8 3.8
Outlook 222 25.6 178 16.6 174 13.9
Power Point 2469 38.3 4727 463 3758 378
Project 1968 32.4 7504 204 5178 157
Win-zip 824 11.6 2930 171 2249 160
Word 1299 26.7 1902 98 1608 86
Average 1503.0 33.5 7409.0 365.7 6092.5 333.9
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memory latency, the extra misses to main memory will cause another 0.0064 CPI adder to the VM 

system CPI.  In summary, the different memory hierarchy behavior will cause an overall 0.02 CPI 

adder to the VM system.   

Now consider the translation overhead, there are two sources of translation overhead, the BBT 

overhead and the SBT overhead, ( ) ( ) SBTSBTBBTBBT iMiM Δ⋅+Δ⋅ . On average, about 1.5 out of every 

1000 x86 instructions executed need to be translated by BBT in the tested traces. Assuming a typical 

BBT translation overhead of 100-cycles per x86 instruction, the CPI adder due to BBT translation is 

0.15.  Table 3.1 shows about 33.52 instructions are identified as hotspot per million dynamic x86 

instructions.  Assuming a 1500 cycle SBT overhead per x86 instruction in the VM system, the data 

suggests that the SBT overhead leads to another CPI adder of about 0.05 for the VM model.  To 

summarize, the VM translation overhead causes an overall 0.2 CPI adder to the VM system for the 

program startup phase. 

It is clear from the above data and analysis that the DBT translation overhead is an order of 

magnitude higher than the extra memory miss-penalty. This analysis backs up the assumption that the 

different memory hierarchy behavior causes only second-order performance impact.  
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3.5 Related Work on DBT Modeling and Strategy 
A first-order performance model for dynamic superscalar processors is proposed by Karkhanis 

ans Smith in [73].   It determined the linear relationship for the overall processor performance among 

major performance factors such as branch prediction, L1 cache misses. Thus, the CPI model of a 

superscalar processor simply adds the first-order performance factors to the base ideal model.  Other 

related work on analytical modeling of processor pipelines is also surveyed in [73].  Our VM per-

formance modeling extends their models to include dynamic translation factors and this becomes 

feasible by observing the translation system behavior from a memory hierarchy perspective.   

Transmeta published limited information about their co-designed x86 processors [82, 83, 122], 

which are probably the only co-designed VM products currently being delivered.  Performance 

modeling of the Transmeta CMS system is not disclosed.  The translation strategy [82, 83] is de-

scribed as a four-stage emulation system that starts with an interpreter. The trade-offs regarding 

setting the hot thresholds (for triggering the higher stages for more advanced optimizations), however, 

are not disclosed.  The CMS translation strategy also adopted a hardware assist scheme [83] that 

accelerates the first stage, the interpreter in the Efficeon CMS system.  There are no official bench-

mark results for the Transmeta x86 processors.  

IBM DAISY/BOA project(s) published performance data [3, 41] for SPEC CPU and TPC-C 

benchmarks. Since SPEC CPU benchmarks have very good code reuse behavior, especially for full 

reference runs, the translation overhead is negligible. TPC-C is one of the few benchmarks in their 

results that demonstrate significant translation overhead. Performance modeling and consequently 

reducing translation overhead was not emphasized in the DAISY/BOA research.  DAISY also used 

interpretation for initial emulation and the hot threshold for invoking the binary translator is set on the 

order of tens due to the slow emulation speed of an interpreter.   
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The ILDP co-designed VM research [76~79] takes a similar (to DAISY) translation strategy 

and simply assumes translation overhead is negligible for most applications.   

The situation is similar for other VMs  similar to the co-designed VM domain.  For example, 

developers of commercial products (such as the Intel IA-32 EL [15]) have not published their transla-

tion trade-off, modeling, and strategies.  However, the IBM Jikes RVM java virtual machine research 

[11] proposed a similar method to set the thresholds that trigger more advanced optimizations for hot 

java methods. Their equation  Tj = Ti * Si / Sj  is essentially the same as our Equation 2, except that it 

is expressed for dynamic java compilation setting.   
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Chapter 4  

Efficient Dynamic Binary Translation Software  

The most distinctive feature of the co-designed virtual machine paradigm is its ability to take 

advantage of concealed, complexity-effective software.  The co-designed VM software is primarily 

for runtime translation from the architected ISA to the implementation ISA, and can potentially 

enable other attractive features.  Software ISA mapping allows intelligent translation and optimization 

at the cost of runtime overhead.  Therefore, it is important for the VM software not only to generate 

efficient native code for high performance, but also to run very efficiently itself (to reduce translation 

overhead).      

In this chapter, I discuss specifically how x86 instructions are translated (and optimized) by 

software DBT to the fusible ISA code.  First, the translation procedure is described in Section 4.1. 

Then, I elaborate on the translation unit formation in Section 4.2 and machine state mapping from the 

x86 to the fusible ISA architected state in Section 4.3.  The key translation algorithms that discover 

appropriate dependent instruction pairs for fusing and schedule these dependent pairs together are 

detailed in Section 4.4 and 4.5.  Section 4.6 discusses how to perform simple and straightforward 

BBT translation targeting fast VM startup.  Finally, Section 4.7 evaluates software translators and 

Section 4.8 discusses related work on software dynamic binary translation.   
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4.1 Translation Procedure 
Dynamic translation algorithms  are highly dependent on  the  particular combination of  the 

architected ISA and the implementation ISA.  In the x86vm framework, with a fusible ISA and 

macro-op execution pipeline, the binary translator includes the following steps.   

1. Translation unit formation.  The translation unit selected in the framework is the superblock 

[65].  Program hotspots are detected by simple hardware profiler, for example as that proposed 

by Merten et al. [98], and are formed into superblocks.  

2. IR Generation.  The x86 instructions in a superblock are decoded and cracked into a RISC 

style intermediate representation (IR).   Memory access (load / store) instructions  and  other 

instructions with embedded long (32-bit) immediate values are transformed into an IR form 

that preserves the long immediate values. The purpose is to keep the original semantics of the 

x86 instructions without concern for encoding artifacts.   

3. Machine state mapping.  All frequently-used x86 register names are mapped to the fusible ISA 

registers in a straightforward way (Section 4.3).  This mapping is employed in the previous 

step in fact.  Additionally, the translator scans superblocks for long immediate values and 

counts frequencies in a small temporary table.  Then, it performs a value clustering/locality 

analysis to allocate frequent immediate values to registers as described in Section 4.3.  

4. Dependent Graph Construction.  Register value dependence is analyzed; this includes x86 

condition code dependences.  A simple dynamic dependence graph is then constructed for the 

superblock and is maintained in place with its IR data structure.  

5. Macro-op Fusing.  Appropriate dependent instructions are discovered and paired together to 

form fused macro-ops (Section 4.4 and 4.5).  Dependent instruction pairs are not fused across 
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conditional branches (and indirect jumps implied by superblock formation). However, depend-

ent instructions across direct jumps or calls can be fused.  Dependences due to x86 condition 

codes are handled as normal data dependences and many fused pairs are in fact formed around 

condition codes.  

6. Register Allocation.  Before this step all registers are identified with  pseudo register numbers.  

To allow precise state recovery as described by Le [85], actual register allocation needs to be 

done at this point. As instructions are reordered, register live ranges are extended to allow pre-

cise state recovery.  Permanent register state mapping (Section 4.3) is maintained at all super-

block boundaries.  

7. Code Generation.  The fusible ISA instructions with fusing information are generated and 

encoded.  Then, the translated superblock is stored in the code cache and registered with the 

VMM for native execution. 

The above translation and optimization procedure is typically performed only for program hot-

spots.  Otherwise, a simpler light-weight translator (Section 4.6) is applied in order to avoid excessive 

runtime translation overhead.  

4.2 Superblock Formation 
As noted above, a superblock is a sequence of basic blocks along a certain execution path. The 

typical size of a superblock is several basic blocks. And a nice property of a superblock that simpli-

fies optimization is that it has only one entry point (though there are multiple exit points). This 

property makes dataflow or dependence analysis within the superblock simpler than otherwise.  A 

disadvantage of superblocks, however, is that they often result in replicated tail code – a constituent 
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basic block of a superblock that is not the entry point can also be part of another superblock, thus 

causing code replication.   

For superblock formation, three issues are especially important, the superblock start point, the 

execution path to follow, and the superblock termination conditions.  In the x86vm framework, the 

superblock start point is determined via a hardware profiler that determines when the execution 

frequency of a basic block (or equivalently a branch target) has exceeded a pre-determined hot 

threshold.  Once such a hot threshold has been reached, the most frequent execution path is followed 

via a profiler counter table.  When a superblock is ended depends on the termination conditions 

defined in a specific system.  In the x86vm, the termination conditions are, (1) indirect jumps such as 

function returns, indirect calls or braches; (2) backward conditional branches; (3) a cycle along the 

path is detected; (4) the execution path already exceeds a defined maximum superblock size, which is 

512 fusible ISA instructions cracked from the x86 instructions.   

4.3 State Mapping and Register Allocation for Immediate Values 
To emulate an architected ISA efficiently, it is important to map the registers in the architected 

ISA to the native registers in the implementation ISA. Otherwise, extra loads and stores are needed.  

Any additional memory operations are especially detrimental to performance.  

To generate efficient native code for emulating the x86 ISA, the binary translator employs a 

permanent register state mapping. The sixteen x86 general-purpose registers (the translator is de-

signed with the 64-bit x86 support in mind. However, it is not benchmarked with 64-bit binaries for 

this thesis) are mapped to the first sixteen of the 32 general purpose integer registers, R0 through R15.  

This standard mapping is maintained at superblock boundaries.  For the first eight x86 registers, we 

use an x86-like notation for readability (e.g. Reax corresponds to x86 eax).  The other eight registers, 

R8 to R15, are mapped directly.  
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R31 is the zero register. Because most x86 binaries have a fairly significant number of zero 

immediate values, the zero register can reduce dynamic instruction count considerably.  Registers 

R24 to R30 are used mainly by the virtual machine software for binary translation, code cache 

management, runtime control and precise state recovery, etc.  Using a separate set of registers for VM 

software can avoid the overhead of “context switches” between the VM mode and the translated 

native mode.   

Registers R16 to R23 are temporary/scratch registers. They are mostly used for providing local 

communication between two operations cracked from the same x86 instruction. The VM mode can 

also use these scratch registers for temporary values before transfer control to native code. These 

scratch registers never need to be saved across superblocks or modes.  

The x86 SSE (1,2,3) registers are mapped to the first sixteen F registers,  F0 through F15, of 

the 32 native 128-bit F registers. All x87 floating point and MMX registers are mapped to F16 to F23.  

The rest of the F registers are FP or media temporary/scratch registers. 

The x86 condition code and FP/media status registers have direct correspondence with registers 

in the fusible ISA, which is designed for implementing the x86 efficiently. For example, the x86 PC 

is maintained in one of the VM registers for VM runtime controls and precise x86 state.   

Due to the relatively small number of general-purpose registers in the x86 ISA (especially the 

32-bit x86 workloads that are benchmarked in this project), x86 binaries tend to have more immediate 

values than a typical RISC binary.  For example, about 10% of all x86 memory access instructions 

[16] have embedded memory addresses as either an absolute address or a base address.  These 32-bit 

long immediate values are problematic when translating to an instruction set with maximum-length 

32-bit instructions.  A naïve translation would use extra instructions to build up each long immediate 

value using at least two extra instructions.  
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To reduce the code expansion (and instruction count) that would result, the VM binary transla-

tor collects these long immediate values within a superblock, analyzes the differences (deltas) among 

the values to identify values that “cluster” around a central value. If such a case is detected, then the 

translator converts a long immediate operand to either a register operand (if the value has already 

been loaded) or a register operand plus or minus a short immediate operand (if the immediate value 

falls within a certain range of an already registered immediate value).  For the example aforemen-

tioned, an absolute addressing instruction can often be converted to a register indirect or register 

displacement addressing instruction. Combined with other frequent immediate values converted by 

this algorithm, the dynamic fusible ISA instruction count can be reduced by several percent.  

4.4 Macro-Op Fusing Algorithm 
The proposed co-designed VM system features macro-op execution which enables more effi-

cient execution of the translated native code by significantly increasing the effective pipeline band-

width without increasing critical pipeline resource demands.  In fact, macro-ops reduce the complex-

ity of critical pipeline stages such as the  instruction scheduler, register ports, execution stage and 

result operand forwarding logic.   

Clearly, the key translation/optimization for SBT is a fusing algorithm  that  first  discovers 

appropriate dependent instruction pairs and then fuses them into macro-ops.  The objectives for the 

macro-op fusing algorithms are: (1) to maximize the number of fused dependent instruction pairs, 

especially those with critical dependencies, and (2) to be simple and fast to reduce translation over-

heads.   

A number of fusing heuristics are targeted at the macro-op execution engine.  The first heuris-

tic concerns the pipelined scheduler: this heuristic always prioritizes single-cycle ALU instructions 
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for fusing, especially for the head of a pair. A multi-cycle instruction will not see IPC losses from 

pipelined scheduling logic, so there is relatively little value in prioritizing it.  

The second heuristic addresses the criticality of the fused dependences:  it first tries to pair up 

instructions that are close together in the original x86 code sequence.  The rationale is that these close 

dependent instruction pairs are more likely to need back-to-back execution in order to reduce the 

program’s critical path.   Consecutive (or close) pairs also tend to be less problematic with regard to 

other issues.  For example, they are more amenable for extending register live ranges to provide 

precise state recovery [85] if there is a trap.   

The third heuristic considers pipeline complexity.   It requires the algorithm to fuse dependent 

instruction pairs that have a combined total of two or fewer unique input register operands. This 

ensures that the fused macro-ops can be easily handled by most conventional pipeline stages such as 

the register renaming stage, instruction scheduling logic, and register file access ports.     

To develop the fusing algorithm for fast runtime translation, we concentrate on algorithms that 

fuse macro-ops via linear scans though the IR instructions either once or multiple times, if necessary.  

For each linear scan, there are two possibilities, either a forward scan or a backward scan.  

After the data dependence graph is constructed, a forward scan algorithm considers instruc-

tions one-by-one as candidate tail instructions. For each potential tail, the algorithm looks backwards 

in the instruction stream for a head.  It does this by scanning from the second instruction to the last 

instruction in the superblock attempting to fuse each not-yet-fused instruction with the nearest 

preceding, not-yet-fused single-cycle instruction that produces one of its input operands.   

Alternatively, a backward scan algorithm traverses from the penultimate instruction to the first 

instruction, and considers each instruction as a potential head of a pair.  Each not-yet fused single-

cycle instruction is fused with the nearest not-yet-fused consumer of its generated value.  
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Algorithm: Macro-op Fusing  
In : micro-op sequence  
Out: micro-op sequence marked with fusible bit info)  
1. for (int pass = 1, pass <=2; pass++) { 
2.  for (each micro-op uop from the 2nd to the last) { 
3.       if (uop already fused) continue;   
4.       if (pass == 1 and uop multi-cycle, e.g. mem-ops) continue;   
5.       look backward via dependency edges for its head candidate; 
6.       if (heuristic fusing tests pass) mark as a new fused pair;  
7.  } 
8. } 

Figure 4.1   Two-pass fusing algorithm in pseudo code 

Neither a forward linear scan nor the backward linear scan algorithm in the dynamic binary 

translator is necessarily optimal.  However, we have found that they are near-optimal. In cases I have 

manually inspected, they capture well over 90% of the possible fusible pairs.  And preliminary 

algorithms and evaluations indicate that a forward scan performs slightly better than a backward scan. 

Note that the direction for searching fusing candidate dependence edges in these algorithms is 

always opposite to the scan direction, so we call this an anti-scan (direction) fusing heuristic. The 

rationale for this will be explained below.  

A forward two-pass scan algorithm was eventually developed to discover macro-ops quickly 

and effectively (Figure 4.1).  A two-pass scan is selected because it naturally honors the pipelined 

scheduler and criticality heuristics without losing efficiency.  The code lines specific to the two-pass 

fusing algorithm are highlighted in the figure.  

After constructing data dependence graph, the first forward scan pass only considers single-

cycle instructions one-by-one as candidate tail instructions. Single-cycle instructions are prioritized 

because the dependence between ALU operations is often more critical and is easier to determine.   

A second scan is performed to consider multi-cycle instructions such as loads and stores as fus-

ing candidate tails.  The goal is to fuse as many macro-ops as possible; in this scan criticality is less of 

an issue.  
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For a pair of candidate dependent instructions, there is a suite of fusing tests to be performed. 

Only if all tests are passed, can the pair be marked as fused macro-op.  For example, the complexity 

constraint requires that any pair of candidate instructions that have more than two unique source 

register-operands can not be fused.  There are other important constraints.  

Code scheduling algorithms that group dependent instruction pairs together need to maintain 

all the original data dependences.  However, some data dependence patterns inhibit such code re-

ordering.  For example, consider the case where a head candidate for a given tail produces a value for 

both its tail candidate and another instruction that separates them in the original code sequence 

(Figure 4.2a).  If the instruction in the middle (N) also produces an operand for the tail, then making 

the tail and head consecutive instructions (as is done for fusing) must break one of the dependences 

between the candidate pair and the “middle” instruction.   Note that in Figure 4.2, the vertical position 

of each node shows its order in the original sequence cracked from the x86 code. For example, A 

precedes B; C precedes D and so on.  

Other situations where data dependences can prevent fusing involve cross dependence of two 

candidate pairs (Figures 4.2b and 4.2c).  However, analysis of these cases is not as straightforward as 

in Figure 4.2a.  Therefore, we need a mechanism to avoid breaking data dependences when we 

reorder instructions for grouping dependent pairs together.    

A nice property of the anti-scan fusing heuristic is that it assures that the pairing pattern shown 

in Figure 4.2b will not occur.  In the case shown in Figures 4.2b and 4.2c, the algorithm will first 

consider pairing C with B rather than D with B, because B is the nearest operand producer for C. 

Consequently, the only pairing considered is the one shown in Figure 4.2c.  
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Figure 4.2   Dependence Cycle Detection for Fusing Macro-ops  

There is an advantage to reducing cross dependences in the case shown in Figure 4.2c versus 

the case in Figure 4.2b.  That is, while considering candidate instructions for pairing, the anti-scan 

fusing heuristic enables the algorithm to consider only instructions between the candidate head and 

tail for detecting any potential dependence cycles.  This reason is that the anti-scan fusing heuristic 

guarantees that B and C are first paired before A and D can be considered.   In contrast, if the case 

shown in Figure 4.2b can occur, then the algorithm has to analyze all the dependent instructions either 

before the head or after the tail.  

Figure 4.2d models the general case for detecting dependence cycles, of which Figure 4.2a and 

4.2c are special cases. Under the anti-scan fusing heuristic, the data dependence cycle detection 

algorithm only considers nodes between the candidate head and tail when looking for potential cycles 

(which inhibit fusing).  Therefore, the anti-scan fusing heuristic provides an efficient mechanism to 

avoid dependent cycles during fusing.  Consequently, it ensures the linear complexity of the fusing 

algorithm. Otherwise, the complexity would be quadratic for an algorithm that considers all the 

dependent instructions beyond the head and tail candidates. 
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    (a) x86 assembly 
1. lea   eax, DS:[edi + 01] 
2. mov   [DS:080b8658], eax 
3. movzx ebx, SS:[ebp + ecx << 1] 
4. and   eax, 0000007f 
5. mov   edx, DS:[eax + esi << 0 + 0x7c] 

 
(b) micro-operations  
1. ADD   Reax, Redi, 1 
2. ST    Reax, mem[R18]   
3. LD.zx Rebx, mem[Rebp + Recx << 1] 
4. AND   Reax, 0000007f 
5. ADD   R21,  Reax, Resi 
6. LD    Redx, mem[R21 + 0x7c] 
 
(c) Fused macro-ops  
1. ADD   R20,  Redi, 1    ::   AND Reax, R20, 007f    
2. ST    R20,  mem[R18] 
3. LD.zx Rebx, mem[Rebp + Recx << 1] 
4. ADD   R21,  Reax, Resi ::   LD Rebx, mem[R21 + 0x7c] 
 

Figure 4.3   An example to illustrate   the two-pass fusing algorithm  

Figure 4.3 illustrates the dynamic binary translator fusing dependent pairs into macro-ops.  In 

Figure 4.3a, a hot x86 code snippet is identified from 164.gzip in SPEC2000. Then, the translator 

cracks the x86 binary into the RISC-style instructions in the fusible implementation ISA, as shown in 

Figure 4.3b.  The long immediate 080b8658 is allocated to register R18 due to its frequent usage.   

After building the dependence graph, the two-pass fusing algorithm looks for pairs of depend-

ent single-cycle ALU micro-ops during the first scan.  In the example, the AND and the first ADD are 

fused. (Fused pairs are marked with double colon, :: in Figure 4.3c).  Reordering, as is done here, 

complicates precise traps because the AND overwrites the value in register eax earlier than in the 

original code.  Register assignment resolves this issue; i.e., R20 is assigned to hold the result of the 

first ADD, retaining the original value of eax. During the second scan, the fusing algorithm considers 

multi-cycle micro-ops (e.g., memory ops) as candidate tails. In this pass, the last two dependent 

micro-ops are fused as an ALU-head, LD-tail macro-op. 
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The key to fusing macro-ops is to fuse dependent pairs on or near the critical path. The two-

pass fusing algorithm fuses more single-cycle ALU pairs on the critical path than a single-pass 

method does in [62] by observing that the criticality for ALU-ops is easier to model and that fused 

ALU-ops better match the 3-1 collapsed ALU units. The single-pass algorithm [62] would fuse the 

first ADD aggressively with the following store, which is typically not on the critical path.  Also, 

using memory instructions (especially stores) as tails may sometimes slow down the wakeup of the 

entire pair, thus losing cycles when the head micro-op is critical for another dependent micro-op. 

Although the two-pass fusing algorithm comes with slightly higher translation overhead, its generated 

code runs significantly faster with pipelined issue logic.  

Fused macro-ops serve as a means for re-organizing the operations in a CISC binary to better 

match fast, simple pipelines. For example, most x86 conditional branches are fused with the corre-

sponding condition test instructions to dynamically form concise test-and-branches. This reduces 

much of the x86 condition code communication.  The x86 ISA also has a limited number of general 

purpose registers (especially for the 32-bit x86) and the ISA is accumulator-based, that is, one register 

operand is both a source and destination.  The consequent dependence graphs for micro-ops tend to be 

narrow and deep.  This fact leads to good opportunities for fusing and most candidate dependent pairs 

have no more than two distinct source registers.  Additionally, micro-ops cracked from x86 code tend 

to have more memory operations than a typical RISC binary; fusing some memory operations can 

effectively improve machine bandwidth.       

Finally, note that although the native x86 instruction set already contains what are essentially 

fused operations, the proposed fusing algorithm often fuses instruction pairs in different combinations 

than in the original x86 code, and it allows pairings of operation types that are not permitted by the 

x86 instruction set; for example the fusing of two ALU operations.  
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4.5 Code Scheduling: Grouping Dependent Instruction Pairs 
The previous section concentrates on the kernel half of the macro-op fusing algorithm – the 

macro-op discovery algorithm that identifies appropriate dependent instruction pairs, and marks them 

to be fused into macro-ops.  However, to complete the macro-op fusing algorithm, there is another 

half of the fusing algorithm:  macro-op code scheduling that reorders instructions into dependent 

pairs.   

Code scheduling algorithms in modern compilers typically re-order instructions to group inde-

pendent instructions close together to enable better ILP.  This kind of code scheduling proceeds by 

scheduling the exposed-set of an instruction dependency graph.   However, the macro-op fusing 

algorithm needs to group dependent instruction pairs together.   This cannot be achieved via conven-

tional code scheduling manipulations.   

After the macro-op discovery algorithm (the macro-op fusing algorithm discussed in the previ-

ous section – Section 4.4), data dependences have been considered and fusible pairs have been 

marked.  Therefore the code scheduling algorithm considers the following.   For a pair of identified 

fusible instructions, are there any other constraints or concerns that prevent moving the middle 

instructions (instructions between the head and the tail) to either before the head or after the tail?  

Such constraints could be memory ordering, interactions between different pairs, and any other 

special-case ordering concerns.  

The code scheduling algorithm is listed in Figure 4.4.   The major method, DepCodeScheduler, 

takes the original instruction sequence marked with macro-op fusing information as the input. It then 

processes the original sequence as an instruction (uops in the figure) stack and processes the uop(s) 

on the stack top.  The output of the algorithm is a scheduled new sequence with most of the fusible 

pairs arranged consecutively and marked as macro-ops.  
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Algorithm: DepCodeScheduler (In: uops-seq,  Out: macro-op-seq) 
1. foreach (uop in uops-seq, from the last to the first) { 
2.    uops-stack.push(uop);  
3. } 
4. while (uops-stack is not empty) { 
5.    uop = uops-stack.pop(); 
6.    if (uop is not fused) { 
7.       Gen_mops (uop, mops_single  macro-op-seq); 
8.    } 
9.    else if (uop is head and the tail is consecutive){ 
10.      head = uop; tail = uops-stack.pop(); 
11.      Gen_mops (head, mops_head  macro-op-seq); 
12.      Gen_mops (tail, mops_tail  macro-op-seq); 
13.   } 
14.   else { 
15.      MidSet = uops-stack.pop(the set of uops between the head and tail); 
16.      head = uop; tail = uops-stack.pop(); 
17.      can_fuse = partition(MidSet  PreSet, PostSet); 
18.      if (can_fuse == true) { 
19.          DepCodeScheduler  (PreSet  macro-op-seq); 
20.          Gen_mops (head, mops_head  macro-op-seq); 
21.          Gen_mops (tail, mops_tail  macro-op-seq); 
22.          uops-stack.push(PostSet); 
23.      } 
24.      else { 
25.          Gen_mops (uop, mops_single  macro-op-seq); 
26.          uops-stack.push(MidSet + tail); 
27.      } 
28.   } 
29
 
.} 

Figure 4.4   Code scheduling algorithm for grouping dependent instruction pairs  

The algorithm operates in the following way.   

A non-fused uop at the top of the stack is popped off the stack and generates a single instruc-

tion in the fusible ISA. The instruction is placed in the output buffer. This is shown from Line 6 to 

Line 8 in the algorithm.  

A pair of consecutive and dependent instructions at the top of the stack that are marked for fus-

ing are popped off the stack and generate two consecutive instructions in the fusible ISA. The head 

instruction has its fusible bit set to mark the two instructions as a fused macro-op (L9~L13). 

If the uop at the top of the stack is part of a marked fusible pair, but the two instructions are 

separated by a set of middle instructions (called MidSet), the algorithm first pops off all the head, tail 
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and the MidSet instructions. Then the algorithm invokes a sub-algorithm to partition the MidSet into 

two sets.  One is called PreSet that includes instructions that must be re-ordered before the marked 

macro-op head; the other is called the PostSet and it holds those instructions that can be re-ordered 

after the tail of the marked macro-op tail.  If this partition fails due to memory ordering or other 

conditions, the head instruction is generated as a single instruction the fusing opportunity identified 

by the macro-op discovery algorithm is abandoned (Note: this re-ordering is done only for fusing 

dependent instruction pairs; the ordering between memory operations is strictly maintained as in the 

original x86 instruction sequence to maintain memory consistency model). Otherwise, if the partition 

succeeds, the scheduling algorithm recursively schedules the PreSet first, and then generates the 

macro-op pair being processed. Finally it pushes all the PostSet instructions back to the stack for 

further processing (L14 ~ L28).  

The sub-algorithm, partition, is designed to honor all the original dependences in the original 

x86 code sequences, including memory operation ordering. The partition sub-algorithm prefers to 

assign instructions to PostSet for future processing. PreSet only holds instructions that must be 

scheduled before the head to maintain the correctness of the re-ordering.   

4.6 Simple Emulation: Basic Block Translation 
As illustrated in Chapter 3, for most workloads, hotspots constitute only a small fraction of all 

executed static instructions. If the full-blown SBT procedure described above is applied to all the 

static instructions executed, the runtime overhead would be very significant. Therefore, like many 

other adaptive translation systems, the x86vm DBT software employs the staged translation strategy 

as discussed in Chapter 2 and 3. When instructions are first encountered, the VM uses fast and simple 

basic block translation (BBT).  BBT improves performance over interpretation by (a) reducing the 

x86 instruction fetch/decode overhead to only one time per basic block; (b) exploiting native register 
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mapping of the x86 architected state as well as specializing the native emulation code for each x86 

instruction; (c) facilitating hardware accelerators to speed up the BBT translation.  With these 

objectives, BBT is more efficient than interpretation as later results demonstrate.  Because no optimi-

zation is performed, a basic block is selected as the translation unit to reduce code management 

complexity and avoid tail replication for translation units beyond a basic block.  

The basic block translator fetches and decodes x86 instructions one-by-one.  After each x86 in-

struction is discovered, BBT cracks it into multiple fusible ISA instruction(s) and stores the transla-

tion into the BBT code cache. The register mapping convention in Section 4.3 is enforced to commu-

nicate with other translations without overhead.  Conceptually, the functionality of this BBT transla-

tion is very similar to the hardware decoders at the pipeline front-end of contemporary x86 processors 

[37, 51, 53, 58, 74].  

However, there are several DBT specific concerns. The first DBT-specific issue regards 

branches. Each x86 branch instruction is translated into a corresponding fusible ISA branch instruc-

tion. If the branch target is known and the target translation is available, the fusible ISA branch 

transfers control directly to the target translation. Otherwise, the fusible ISA branch transfers control 

back to the VMM runtime, which will patch the branch and link directly to the target translation that 

will be available at the VMM link time. This translation control transfer mechanism is the same as 

that of the superblock translation.  

The second DBT-specific regards hotspot profiling. In many VM systems, including the IBM 

Daisy and Transmeta co-designed VM systems, the initial emulation system also performs profiling 

and this adds extra overhead. The x86vm framework features special hardware support to detect 

hotspots. The goal is to reduce runtime overhead and the BBT translation complexity.  As will be 
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seen in Chapter 5, the removed BBT profiling will also facilitate hardware acceleration of the BBT 

translation process.  

The third DBT-specific issue is code caching for BBT translations. Like optimized hotspot 

translations, BBT translations are cached in a BBT code cache for reuse. This cache space may 

require extra memory space. Typically, BBT translations are not repeatedly reused over a long period, 

however, so flushing a limited BBT code cache is acceptable, especially if BBT can re-translate very 

quickly.  

 

4.7 Evaluation of Dynamic Binary Translation 
There are two complementary aspects to the dynamic binary translation system: the effective-

ness of its macro-op fusing algorithms and the efficiency of its translation process.  

Evaluation of the effectiveness of macro-op fusing algorithms 

A primary functionality of the dynamic binary translator is the fusing of macro-ops. The degree 

of fusing, i.e., the percentage of micro-ops that are fused into macro-ops, determines how effectively 

the macro-op execution engine can utilize the pipeline bandwidth. Additionally, the profile of non-

fused micro-ops implies how the pipelined scheduler affects IPC performance.   

Figure 4.5 plots fusing profiles. The x-axis shows the individual benchmarks. The y-axis shows 

the percentages of dynamic micro-ops that are fused, and, if not fused, they are further classified into 

the categories of  loads (LD), stores (ST), branches (BR), floating point (FP) or NOP and ALU-ops.  

Clearly, the macro-op fusing profile is fairly consistent across all the SPEC2000 integer benchmarks 

and the Windows workloads tested.   
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Figure 4.5a presents the results for the SPEC2000 integer benchmarks. On average, more than 

56% of all dynamic micro-ops are fused into macro-ops, much higher than the sub-40% coverage 

achieved in hardware-based fusing reported in the related work [20, 27, 81, 110] for the common 

SPEC2000 integer benchmarks. Non-fused operations are mostly memory LD/ST operations, 

branches, floating point operations and NOPs.  Non-fused single-cycle ALU micro-ops are only 6% 

of the total micro-ops, thus greatly reducing the penalty due to pipelining the macro-op scheduler.   

For the WinStone2004 Business Suites, more than 48% of all dynamic micro-ops are fused into 

macro-ops (Figure 4.5b).  Non-fused single-cycle ALU micro-ops are about 8% of all dynamic micro-

ops.  It is clear that the Windows application workloads not only have relatively larger instruction 

footprints, but also are more challenging for macro-op fusing.     
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Figure 4.5   Macro-op Fusing Profile  
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The micro-ops that are fused into macro-ops (nearly 50% to 60%)  lead to an effective 25% to 

30% bandwidth reduction throughout the pipeline.  These fusing rates are lower than a single-pass 

fusing algorithm [62] which can fuse (65% for SPEC2000 integer and 50+% for WinStone2004).  

However, the improved two-pass fusing algorithm prioritizes critical single-cycle ALU-ops for 

fusing.  Preliminary performance experiments with the single-pass fusing algorithm actually show 

inferior IPC performance numbers because its greedy fusing heuristic does not prioritize critical 

dependences and single-cycle integer ALU operations. Results in Chapter 6 will show the superior 

performance enabled by the two-pass macro-op fusing algorithm.  

In theory, pairing arbitrary RISC-style micro-ops together may lead to macro-ops having three 

or more source register operands because each micro-op can have three register operands and two of 

them can be source operands.  More source register-operands would require each macro-op issue 

queue slot to accommodate more source register specifiers than a conventional issue queue slot.  To 

avoid this and honor the heuristic for reduced pipeline complexity, our fusing algorithms do not fuse 

micro-op pairs that have more than two distinct source register operands.  However, it is interesting to 

evaluate whether this heuristic passes up a significant number fusing opportunities.   

Figure 4.6 shows the percentages of fusing candidates that fall into macro-op categories with at 

most two source register operands, and at most three register operands.  It is clear that almost all 

fusible candidate pairs have three or fewer input register specifiers for both SPEC2000 integer and 

WinStone2004 Business Suite workloads.  For SPEC2000 integer, nearly 96% of all fusible candi-

dates have two or fewer distinct source registers.  For WinStone2004 Business, this percentage is a 

little more than 94%.  In both benchmarks, the worse case has 85% of all fusible candidate pairs with 

two or fewer distinct source register operands. Overall, we conclude that the two-operand heuristic 

does not appear to lose many fusing opportunities.  
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Figure 4.6   Fusing Candidate Pairs Profile (Number of Source Operands) 
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After fusing, the non-fused micro-op profile provides important information. In particular, only 

6~8% non-fused micro-ops are single-cycle ALU operations that produce a value consumed by 

dependent micro-ops. Other non-fused micro-ops are either multi-cycle operations, e.g. LD and FP 

ops, or micro-ops that do not generate a value, e.g. branches and NOPs.  Therefore, the pipeline for 

macro-op execution can be designed as though all operations take two or more cycles for execution.  

For example, the critical macro-op scheduler/issue logic can be pipelined and the execution  stage can 

be simplified.   

The profile of the fused macro-ops also sheds some light on potential gains for performance or 

efficiency.  Figure 4.7 shows that the fused macro-op pairs fall into the following three categories:  

 ALU-ALU macro-ops. Both the head and tail micro-ops are single-cycle ALU operations. The 

head produces a value that is consumed by its tail and this value communication is fused. The 

fused ALU pairs must meet the constraints of a collapsed 3-1 ALU [98, 106].   

 ALU-BR macro-ops.   The head is a single-cycle ALU operation. The tail is a branch operation. 

The head produces a value consumed by the tail.  In most cases, the head is a condition code 

set ALU-op and the tail is a conditional branch based on the conditional code.  

 ALU-MEM macro-ops. The head is a single-cycle ALU operation that produces a value for its 

tail that is memory operation, either a LD or a ST.   The head ALU is an address calculation 

operation in most cases and in some cases produces a value to be stored to memory.  

Figure 4.7 shows that for SPEC2000 benchmarks, 52% of fused macro-ops are ALU-ALU 

pairs, 30% pairs are ALU-BR, and only 18% of total macro-ops are ALU-MEM pairs.  For Windows 

workloads, the results are slightly different. 43% of macro-ops are ALU-ALU pairs, 35% of macro-

ops are ALU-BR pairs and 22% macro-ops are ALU-MEM pairs.  
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The fusing heuristic that targets criticality suggests fusing nearby dependent instruction pairs. 

Figure 4.8 shows the distance distribution of the fused pairs of micro-ops. The x-axis (vertical) lists 

the tested benchmarks. The y-axis (horizontal) shows the percentage of dynamic macro-ops that fuse 

two micro-ops with a certain distance in the original micro-op sequence (cracked from the x86 

instructions).   The distance is measured as the instruction ordering/index difference in the original 

micro-op sequences.   For example, distance “1” means consecutive instructions in the original micro-

op sequence and distance “2” means there is an instruction in the middle between the head and tail in 

the original sequence.   

Figure 4.8 illustrates that about 65% of all dynamic macro-ops are fused from two consecutive 

micro-ops in the original sequence, though not necessarily from the same x86 instruction. About 20% 

of the macro-ops are fused from micro-op pairs separated by distance 2.  About 10% of the macro-ops 

are fused from micro-op pairs separated by 3 or 4.    Less than 5% of all dynamic macro-ops are fused 

from micro-op pairs that are farther than 5 instructions apart.    

Figure 4.8 suggests that a hardware macro-op fusing module might be feasible for targeting 

consecutive micro-op pairs that are suitable for fusing.   However, this is not as straightforward as it 

first appears.  Such a fusing method would likely function like the single-pass fusing algorithm [62] 

that fuses so greedily that it can actually hurt performance.  A hardware fusing module also brings 

extra pipeline complexity. This opportunity is left as a topic for future research.     

Considering the data from both Figure 4.7 and 4.8 together, it is evident that fused ALU-op 

pairs and dynamically synthesized powerful branches (a fused condition test with a conditional 

branch) will provide the primary performance boost. The accelerated address calculations will also be 

a significant performance contributor.  Most macro-ops are fused within the same basic block and 

will therefore cause less complications for consistent machine state mapping.  
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As a side effect of dynamic binary translation, code straightening effects caused by superblock 

formation are also of interest. Our data suggests that a dynamic superblock in our VM system 

typically consists of three to five basic blocks.  Many unconditional direct jumps are removed for 

improved instruction fetching.  Results to be given later (Chapter 6, Section 6.3) will demonstrate the 

performance effects. 

Evaluation of efficiency of the dynamic binary translation software 

As the performance models in Chapter 3 suggest, translation overhead in general is the product 

of the code cache misses MDBT and the code cache miss penalty ΔDBT.   And in our two-stage transla-

tion system, it is caused by both BBT and SBT.  The profile information for BBT and SBT is then 

needed to evaluate the efficiency of the translation system.  This information will also help to develop 

hardware assists for DBT system.  Since the MBBT and MSBT are essentially characteristics of pro-

grams, here we focus on profiling the  ΔBBT and ΔSBT  components instead.  

Figures 4.9 and 4.10 show the runtime overhead profiles for the ΔBBT  and ΔSBT  components. In 

both the figures, the x-axis lists the benchmarks. The y-axis shows the number of dynamic translator 

instructions to translate each x86 instruction. The BBT is accurately modeled via its native assembly 

code in our x86vm infrastructure and its overhead is measured in terms of number of fusible ISA 

instructions.   On the other hand, the SBT is too complex to be modeled in the same way.   Hence, we 

use profiling tools to profile the SBT that is written in C++ and runs as x86 binary.  The overhead is 

then measured in terms of x86 instructions, and can be converted to fusible ISA instructions.  

For each x86 instruction, the BBT overhead can be modeled as, ΔBBT = Tdecode + Tencode.  The 

decode part includes determining the x86 instruction boundary, decoding, and indexing to the 

cracking routine for the x86 instruction. The encode part includes cracking that x86 instruction and 

encoding the fusible ISA micro-ops.  Moreover, there are other miscellaneous VM runtime overheads 
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Figure 4.9   BBT Translation Overhead Breakdown  

spent for branch instruction linking/patching, translation registration, translation table lookup and 

code cache management etc.  

Figure 4.9 indicates that on average, the software runtime overhead for each BBT translated 

x86 instruction is about 106 native fusible ISA instructions.   Figure 4.9 further breaks down the BBT 

runtime overhead into: fetch/decode (Tdecode), cracking x86 instructions (Tencode) and other miscellane-

ous tasks (Tmisc).  Because of the complexity of the x86 instruction set, our BBT has fairly heavy 

overhead even for the BBT written in fusible ISA assembly.  There should be space for improvement. 

However, it is unlikely to be significant.  

For each x86 instruction, the SBT translation and optimization overhead can be modeled as, 

ΔBBT = Tdecode + Toptimize + Tencode. Here, Toptimize is the dominant part for translation and optimization.  
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The SBT in our VM system is written in C++, not in fusible ISA assembly. Therefore, it is profiled 

with the Intel VTune for Linux 2.0 and GNU gprof,  rather than detailed simulations as for BBT. The 

overhead is broken down by C++ functions, rather than the above model.   For example, the Codegen 

bars in Figure 4.10 also include the overhead for grouping dependent instruction pairs together and 

register allocation for state mapping.   

Figure 4.10 indicates that per x86 instruction SBT overhead is about 1150 x86 instructions. 

There is no dominant function for the SBT overhead.  And there are other considerations for reducing 

SBT overhead. For example, the hotspot translation and optimization should be flexible and capable 

to target its co-designed processor, and a balanced VM system applies hotspot optimizations only to a 

small footprint of static code.  
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4.8 Related Work on Binary Translation Software 
There are many research efforts and commercial products related to binary translation software.  

In this chapter, we emphasized the major issues regarding translation and optimization of x86 binary 

code for our co-designed macro-op execution engine. There are some details that have not been 

specifically addressed, such as self-modifying code and page reference bookkeeping for the archi-

tected ISA (x86). These issues have already been tackled in related work.  Translation and optimiza-

tion for other architecture innovations such as VLIW ISAs are also considered as related work.   

The original version of IBM DAISY [41] used a single-stage translation system that translated 

all PowerPC (architected ISA) instructions in a given physical page when an untranslated code page 

was executed . This pioneering work addressed the issues of precise exceptions, and page and address 

mapping mechanisms to maintain 100% architecture compatibility.   Later versions of IBM DAISY 

[3, 42] adopted an adaptive/staged translation strategy, i.e. first interpret PowerPC instructions before 

they reach certain threshold.  Once the hot threshold is reached, a hotspot is identified and a transla-

tion unit, tree region/group, is formed, followed by optimizing translation.  

The Transmeta Crusoe processor [54, 82] also uses staged emulation with a software inter-

preter first emulating x86 code, followed by translation and optimization of hotspots. The initial 

interpretation process also performs software online profiling.  Each code region is interpreted 

multiple times up to a given threshold, and then translation to native VLIW code is performed. The 

Crusoe Code Morphing Software [36] systematically addressed the issue of x86 self-modifying and 

self-referencing code, which are quite frequent in x86 device drivers, legacy software, and security 

related software.  The CMS system features specific approaches for different scenarios to maintain 

efficiency and 100% compatibility.    
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The Transmeta Efficeon processor emloys a unique 4-stage translation strategy (including the 

initial interpretation [83]) to reach the right level of optimization for different code regions. The 

translation unit is a tree region.  

All the discussed IBM and Transmeta co-designed virtual machines happened to use VLIW 

engines as the co-designed microarchitecture. With the in-order VLIW approach, considerable 

software optimizations are required for scheduling/reordering instructions, especially if speculation is 

implemented via the instruction set [70].  The optimization overhead for VLIW engines are quite 

heavy, 4000+ native operation per PowerPC [41].  The data for Transmeta CMS is estimated to be 

similar.  The Transmeta processors provide checkpoint and fenced store-buffer mechanisms to 

support such reordering.   

Of course, the processor for a co-designed VM does not necessarily have to be a VLIW. The 

co-designed ILDP (Instruction Level Distributed Processing) VM [76, 78] explored translation 

algorithms for its superscalar-like processor. In that approach, the DBT software forms strands 

(chains of dependent instructions) for a co-designed ILDP microarchitecture.  As with our macro-op 

execution engine, the ILDP processor microarchitecture is fully capable of dynamic instruction 

scheduling.  For such out-of-order architectures, the optimization software is anticipated to be 

significantly simpler than that for the VLIW implementations.      

Besides those that use the co-designed VM paradigm, there are other VM systems that emulate 

program binaries. These systems run software distributed in source ISA on top of target ISA plat-

forms.  The interface these VM systems handle is ABI (Application Binary Interface), which includes 

user-mode part of the source and target ISA(s), OS system calls and certain exceptions.  

The Intel IA-32 EL [15], for example, dynamically translates x86 instructions into IA-64 [70] 

VLIW instructions on-the-fly for user-mode code only.  IA-32 EL is a two-stage translation system 
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that does not interpret.  All x86 code is translated (when first executed) with a simple and fast BBT 

translator. The BBT translator instruments its translations to collect execution profiles. The BBT 

translator also applies certain rules when generating code so that the precise state can be recovered 

easily should an exception occurs anywhere within the basic block translation.   For example, for each 

x86 instruction, no x86 architected state is modified until all operations performed by the instruction 

finish without exception.   Later, after hot code is detected, a heavy-duty optimizing translator is 

applied to generate optimized code for the target Intel IPF processors.   

The DEC FX!32 [24, 60] implements a high performance x86 interpreter and a profile-guided 

static binary translator for running the x86 Windows applications on DEC Alpha Windows platforms. 

The interpretation overhead is rather low for the x86 – less than 50 Alpha instructions per x86 

instruction.  To strive for performance, FX!32 does not maintain intrinsic binary compatibility.  For 

example, it does not emulate x87 floating point faithfully, and it cannot materialize the precise x86 

state at an arbitrary point within its translation.  

There are also binary translators for RISC ISAs, for example, PA-RISC to IA-64 [130], VEST/ 

TIE for Alpha and mx for MIPS [113]. RISC instruction sets have much lower software decode and 

interpretation overhead when compared with a CISC instruction set such as the x86.  

Dynamo [13] is a PA-RISC dynamic optimization system. It interprets first and optimizes hot-

spots detected.  It bails out if its optimization does not improve performance.  DynamoRIO [22] is a 

framework for runtime code transformation and inspection for the x86.  
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Table 4.1   Comparison of Dynamic Binary Translation Systems  
 
DYNAMIC 
BINARY 
TRANSLATION 
SYSTEMS  

HOTSPOT 
OPTIMIZATION 

TRANSLATION 
OBJECTIVES 

TRANSLATION 
STRATEGY 

HOTSPOT 
DETECTION COLD CODE 

Multi-source/target 
Translation Study 

Adaptive 2-stage 
Software 

Software Edge 
Profiling 

Generic Hot Path 
Opts.  UQDBT BBT 

Simulation via 
Binary translation 

Always Translate w/ 
Simulation functions Shade n/a n/a n/a 

Run Windows x86 
apps on Alpha   

Online Interpreter, 
Offline Translation 

Software 
(Interpreter) 

Static Translator 
Optimize for Alpha FX!32 Interpreter  

Run IA-32 apps on 
Intel IPF platform 

Adaptive 2-stage 
Software 

Software 
Instrumentation  

Optimize for IPF 
processors  IA-32 EL BBT 

ISA mapping for 
efficiency, 
performance   

SW DBT w/ 
Simple HW Assist. 
Fuse macro-ops 

Adaptive 2-stage, 
HW/SW Co-Designed 

Dual mode / 
BBT 

Hardware 
Detector x86vm  

Tree-region Opts 
for its 4-wide 
VLIW engine 

ISA mapping for 
low power and 
HW complexity  

Adaptive, 3-stage 
Software  

Interpreter and   
BBT Software CMS: Crusoe 

ISA mapping for 
Low power and 
HW complexity 

Tree-region Opts 
for its 8-wide 
VLIW engine 

Adaptive 4-stage SW 
w/ some HW support 

Interpreter and  
BBT CMS: Efficeon Software? 

HW counters / SW 
Instrumentation at 

group exits 
ISA mapping for 
Performance (ILP) 

Adaptive 2-stage 
Software 

Tree group Opts 
for VLIW engines DAISY / BOA Interpreter  

Dynamo: Opts Dynamic code 
Opts and 
inspection 

Interpreter. 
RIO: Native 
EXE or BBT 

Adaptive 2-stage 
Software  

Software MRET 
hot path formation  Dynamo (RIO) RIO: flexible for 

multi-purpose 

HLL Java Program 
Platform 
Independence 

Adaptive 2-stage 
Software Jikes RVM Simple JIT Software Optimizing JIT 

Multi-Language 
Platform 
Independence 

Adaptive 2-stage 
Software  

Software profiling 
Instrumentation  Microsoft CLR Simple JIT Optimizing JIT 

 

As a brief summary of the related work on DBT, Table 4.1 compares many existing dynamic 

binary translation systems.    Note that all systems perform translation chaining inside code caches for 

direct branches. The ILDP VM also uses hardware support to chain indirect branches.  
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References [4, 5] provide excellent surveys regarding the state-of-the-art of dynamic binary 

translation and important issues such as precise exception handling. Le [85] shows how to extend 

register live range to support precise exception handling for out-of-order scheduling in DBT.  
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Chapter 5  

Hardware Accelerators for x86 Binary Translation 

 

As discussed in Chapter 3, the x86vm translation strategy includes new primitives and assists to 

accelerate the critical part of the VM runtime software, especially for BBT translation and hotspot 

detection.  In this Chapter, we propose two new hardware accelerators for BBT, one at the pipeline 

front-end (Section 5.1) and the other at the pipeline backend (Section 5.2).  Hardware assists for 

hotspot detection and profiling are described in related work.  In Section 5.3, we discuss how these 

assists help co-designed VM systems in particular.  The proposed hardware assists are evaluated in 

Section 5.4.  Section 5.5 surveys related work.  

 

5.1 Dual-mode x86 Decoder 

In conventional x86 processor designs, x86 instructions are decoded into RISC-style operations 

called micro-ops/uops.  Although this hardware translation cannot achieve the powerful translation 

and optimizations we propose for hotspot translation, this mechanism can perform the simple transla-

tion sufficient for program startup phases.  
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In contrast, most start-of-the-art co-designed VM systems run a slow software interpreter or 

simple BBT translator to get beyond program startup phases and then count on optimized hotspot 

code to compensate for the startup performance loss.  The extra software runtime overhead may not 

always be paid back (at least for some of the scenarios discussed in Chapter 1).  

We propose a method for collecting the advantages of both types of systems: the solid startup 

performance of conventional x86 processors, and the flexible advanced software translation for 

hotspot performance optimization.  The key is a mechanism that seamlessly combines these two 

execution modes (dual mode) together.  

The key to the method lies in the decoder stage. For a macro-op execution pipeline, fusible ISA 

instructions can be decoded by simple RISC-style decoders. However, for x86 (CISC) processor 

pipelines, the x86 instructions go through a two-level decoding process. The first level decoder 

identifies x86 instruction boundaries and cracks x86 instructions into “vertical” RISC-style micro-ops 

[119].  Then, a second level decoder generates the “horizontal” decoded signals and controls used by 

the backend pipeline. The second level decoder is in fact very similar to the RISC-style decoders in 

our macro-op execution microarchitecture. A two-level decoder is especially suited to a CISC ISA 

because complex CISC instructions must both be decomposed (cracked) into RISC-style micro-ops 

and be decoded into pipeline control signals.  
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Figure 5.1   Dual mode x86 decoder  

The two-level decoder was first published for the microcode engine used in the Motorola 

68000 and has been deployed by most modern CISC processors.  Our macro-op pipeline leverages 

this two-level decoding approach and employs a dual mode (two-level) decoder (Figure 5.1) that 

targets CISC ISA(s) in particular.  The first level of the dual mode decoder identifies x86 instruction 

boundaries and cracks x86 instructions into “vertical” RISC style micro-ops. However, the dual mode 

aspect dictates that the RISC micro-ops are in the same 16-bit/32-bit micro-op format as for the 

fusible ISA.  The second level of dual mode decoder then generates conventional “horizontal” 

decoded control signals.  To this structure, we add a bypass path (Figure 5.1) around the first level 

decoder, which enables the decoder to be used in dual modes (x86 and fusible ISA).  

The two modes of the dual-mode decoder are named x86-mode and native mode.  In x86-mode, 

x86 instructions are fetched from memory, and both decode levels are used.  In native-mode, hotspot 

translated implementation instructions are fetched from the code cache.  These fusible ISA instruc-

tions bypass the first level decoder and only go through the second level decoder.  With the dual-

mode decoders, both architected ISA (x86) code and implementation ISA instructions can be proc-

essed by the same pipeline.  The ability to support x86 mode eliminates the need for BBT, along with 

its translation overhead and any side effects on the memory hierarchy. 
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Figure 5.2   Dual mode x86 decoders in a superscalar pipeline  

As the processor runs, it switches back and forth between x86-mode and native-mode, under 

the control of VMM software.  The x86-mode is entered if a piece of x86 code has no translation in 

the code cache; this is done when a program starts up, for example. As the program runs, some parts 

become hotspot. Once a hotspot has been translated and optimized, the VMM software switches to 

native mode to take advantage of its efficiency and performance.   

When executing in x86-mode, instructions pass through both decode levels (Figure 5.2).  In 

this case, the dual-mode decoders generate micro-ops with a code quality similar to conventional x86 

decoders.  Furthermore, the macro-op execution pipeline is an enhanced superscalar that processes 

non-fused micro-ops in a similar way as a conventional superscalar, except the scheduler is pipelined.  

The pipelined scheduler loses the back-to-back issue capability for dependent micro-ops that are not 

fused; however, it also leads to higher clock speeds.  Therefore, in x86-mode, performance will be 

similar to a conventional superscalar x86 processor.  

When executing in native mode, fused RISC-style micro-ops pass through only the second 

level of the decoder (Figure 5.2), leading to a shorter pipeline frond-end for branch misprediction 

penalty. The complex first level of the dual mode decoder can be turned off.   

A side effect of using the dual-mode approach is that profiling software cannot be embedded 

into BBT generated code -- because there is no BBT code.  As a consequence, the design should 
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employ profiling hardware similar to that used by Merten et al. [96, 98]. This hardware’s sole 

function is to detect hotspots.  When a hotspot is detected, the hardware invokes the VMM software 

which can then organize hotspot code into superblock(s), translate and optimize it, and place the 

optimized superblock(s) in the code cache.  

Dual mode decoders are fast and fit well in a conventional superscalar design. The replacement 

of a single-level decode table with a two-level decoder represents a good hardware tradeoff which 

results in fewer transistors, as explained by the Motorola 68000 designers [119].  This approach, 

when extended to dual mode operation, adds relatively little extra hardware to a conventional two-

level CISC decoder implementation -- the bypass path around the first level decoder.  

5.2 A Decoder Functional Unit 
The front-end dual mode decoder described in the previous subsection modifies a critical part 

of the processor pipeline and must be able to decode instructions at full bandwidth.  Furthermore, it 

must be designed to implement the complete architected ISA (x86).    However, dynamic binary 

translation software may fit better with flexible, programmable and more complexity-effective 

hardware assists.  

An alternative approach is to implement the hardware assist in the form of a programmable 

functional unit at the pipeline back-end.  A functional unit at the execution stage is less intrusive than 

the front-end dual mode decoder, does not need to provide the high bandwidth of the front-end 

decoders, and can target only the common cases, not all cases. 

As previously illustrated, during initial emulation, BBT introduces the major runtime overhead, 

and the dominant part of BBT is to decode and crack x86 instructions into micro-ops. According to 

our measurements, on average, about 90 out of the 106 µops overhead for translating each x86 
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instruction in our BBT system is related to instruction decoding and cracking. Therefore, a functional 

unit that performs these operations should significantly speed up BBT.   

Table 5.1   Hardware Accelerator: XLTx86  

NEW INSTRUCTION BRIEF  DESCRIPTION 

Decode an x86 instruction aligned at the beginning of the 128-bit Fsrc 
register, and generate RISC-style 16b/32b uops into the Fdst register. 
This instruction affects the CSR status register 

XLTx86 Fsrc, Fdst 

 

We propose such a backend functional unit that is accessed through a new instruction in the 

implementation ISA. Table 5.1 briefly describes the new instruction: XLTx86.  XLTx86 accesses the 

128-bit F registers that are architected for mapping the x86 FP/media states. Additionally, XLTx86 

operates on a special flag status register CSR that is explained below.   

  0. HAloop:  
  1. LD    Fsrc, [Rx86pc] 
  2. XLTx86 Fdst,  Fsrc                  
  3. Jcpx   complex_x86code 
  4. Jcti  branch_handler 
  5. ST    Fdst, [Rcode$] 
  6. MOV   Rt0, CSR 
  7. AND   Rt1, Rt0, 0x0f  ::  ADD   Rx86pc, Rt1   
  8. AND.x  Rt2, Rt0, 0xf0  ::  ADD   Rcode$, Rt2   
  9. JMP  HAloop 

  (a). Code for the HW assisted fast BBT loop 

Flag_cmplx µops_bytes (4-bit)Flag_cti x86_ilen (4-bit)
 

  (b). The control and status register (CSR) format for XLTx86 

Figure 5.3   HW accelerated basic block translator kernel loop 
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Figure 5.3a illustrates the kernel loop used by the VMM for hardware accelerated BBT (in the 

implementation ISA assembly language).  Rx86pc is an implementation register that holds the 

architected x86 PC value; this register points to an instruction in the x86 instruction memory.  

To be more specific, x86 instructions are fetched by a load operation into register Fsrc.  Be-

cause x86 instructions are from one byte to seventeen bytes long (and very few are more than eleven 

bytes in real code), the Fsrc register holds at least one x86-instruction. The fetched x86 instruction is 

aligned at the beginning of the Fsrc register. The next instruction, XLTx86, then decodes and cracks 

the x86-instruction into uop(s). The input to XLTx86 is the Fsrc register. The output uops are placed 

in the Fdst register and flags are set in the CSR status register. The format of the flag status register 

CSR is shown in Figure 5.3b. The 4-bit x86_ilen field returns the length of the x86 instruction. The 4-

bit uops_bytes field returns the length of the generated uop(s) in the implementation ISA.  

The Flag_cmplx bit is set if the x86-instruction being decoded is too complex for the hardware 

decoder. This escape mechanism keeps the hardware assist simple and fast by off-loading the compli-

cated cases to software; for example, if the x86 instruction should happen to be more than 16 bytes 

(the size of the Fsrc register). The Flag_cti flag bit is set if the x86-instruction being processed is a 

control transfer instruction. After decoding, most x86-instructions are cracked into uops of no more 

than 16 bytes. Note that the 16-bit/32-bit fusible implementation ISA design implies that, only in a 

few rare cases, the 128b Fdst is too short to hold result uops; this is another case that is flagged as a 

complex instruction. Native uops in Fdst are written back to the code cache by a store operation. The 

rest of the loop does bookkeeping.   

For architected state mapping, the CSR register can be mapped either to the same FP/media 

status register for x86 SIMD instructions, or to a separate implementation status register. Fsrc and 

Fdst are mapped to FP/media temporary registers F24 through F31.  
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For microarchitecture design, the new functional unit is located in the FP/media part of the 

processor core because it uses F registers to hold long x86 instructions and multiple uops (Figure 5.4).  

If implemented in superscalar style microarchitectures such as macro-op execution, the XLTx86 

instruction would be dispatched to the FP/media instruction queue(s) and issued to the new functional 

unit via a FP/media issue port. XLTx86 can take multiple cycles to execute as do many other 

FP/media instructions. In our research, we assume XLTx86 takes four cycles. The x86 instruction 

bytes are supplied to the functional unit via streaming buffer and the generated uops are written back 

to memory directly without going through the data cache.  

For circuit design, the functional unit for  XLTx86  is essentially a simplified,  one instruction 

wide,  x86 decoder relocated in the execution stage of the FP/media core.  For cost effectiveness, 

XLTx86 only needs to handle simple common cases. Frequent x86 instructions are handled by the 

decoding functional unit; complicated and rare x86 instructions set the Flag_cmplx flag in the CSR 

register to escape for VM software handling. 
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Figure 5.4   Hardware Accelerator microarchitecture design  

The new instruction, XLTx86, speeds up BBT by accelerating the dominant part of the fetch, 

decode and crack, from tens of cycles for a software-only translator, to only a few cycles for BBT 

assisted by hardware. Meanwhile, because it is an instruction that provides a primitive operation 

(from the translator perspective), it offers the VMM flexibility and programmability beyond the dual 

mode decoders embedded in the pipeline front-end.  

Compared with dual mode decoders, the functional unit only performs the BBT translation 

once for each basic block as long as the translation is not replaced. Although the BBT translation is 

still an extra overhead, the generated native code does not invoke further complex CISC decoding.  

Therefore, for non-hotspot emulation performance, the translations generated by BBT will likely 

perform similarly to the x86-mode enabled by the dual mode decoders. The BBT translation over-

head, although significantly reduced by the XLTx86 assist, will likely to appear for cases where 

bursts of translations can occur.   
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The hardware complexity of the backend decoding functional unit is also less than the front-

end dual mode decoders.  As aforementioned, only frequent common cases are handled by the 

XLTx86 instruction, complex and rare cases are handled by software. Furthermore, just one such 

functional unit can achieve most of the translation performance boost. And a backend functional unit 

has very localized impact on the processor pipeline design.   

The decoders for CISC instructions are power hungry circuits [54] and it is the complex first 

level decoding logic that consumes most of the power. In conventional x86 processors, these decoders 

need to turn on both levels and consume power whenever x86 instructions are fetched from memory 

hierarchy.  In contract, dual mode decoders save energy by turning off the complex first-level decode 

stage when native code is executing during steady state.  The decoder as the backend function unit, on 

the other hand, only consumes power when a new piece of code is executed for the first time. Hence, 

the backend function unit has similar energy implication as software-only VM systems.  

   

5.3 Hardware Assists for Hotspot Profiling 
In a staged translation system, early emulation stages also conduct online profiling to detect 

hotspots and trigger transitions to higher emulation stages.  This profiling is performed by software in 

many VM systems.  Although the major VM overhead is due to translation/emulation, the profiling 

can cause significant overhead once the DBT translation is assisted by hardware.   In this section, we 

briefly discuss profiling in general. Then we emphasize simple hardware profilers/hotspot detectors 

that have already been proposed by related research efforts.   

Program hotspot detection has long been performed by software profiling. The common soft-

ware profiling mechanism is to instrument relevant instructions (or bookkeeping in an interpreter) to 

collect desired data.  For program hotspot detection, control transfer instructions are instrumented so 
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that the execution frequency of basic blocks or paths can be tracked.  Ball and Larus [14] proposed 

the first path profiling algorithm.  This software instrumentation algorithm leads to 30-45% overhead 

for acyclic intra-procedure paths.  When paths are extended to cross procedural or loop boundary, the 

overhead increases rapidly.  TPP [72] and PPP [18] are proposed to attempt reducing the profiling 

overhead significantly without losing much accuracy and flexibility.  

Hardware support for profiling first appeared as performance counters. Most recent AMD, 

IBM and Intel processors [51, 58, 120] are equipped with such simple assists to facilitate performance 

tuning on their server products.    

Conte [31] introduced the profile buffer after the instruction retirement stage to monitor candi-

date branches. The proposed profile buffer is quite small, typically no more than 64 entries. Some 

compiler analysis and hint bit(s) are assumed to improve profiling accuracy.  That is, to utilize this 

profiler, new binary needs to be generated by such a compiler.  

Merten et al [96] proposed a larger (e.g. 4K-entry) Branch Behavior Buffer (BBB) and a hard-

ware hotspot detector after the retirement stage. This enables their scheme to be transparent to 

applications and capable of profiling any legacy code.  The hotspot threshold is a relative one – a 

branch needs to execute at least 16 times during the last 4K retired branches to qualify for a candidate 

branch.   Detected hotspot(s) invoke software OS handlers for optimizations at runtime.  Because this 

approach can be made transparent and cost-effective, we assume that an adapted version of this 

hardware hotspot detector is deployed in our VM system.   

Vaswani et al [125] proposed a programmable hardware path profiler that is flexible and can 

associate microarchitectural events such as cache misses and branch misses with the paths being 

profiled. They ran 15-billion instructions for each benchmark to study more realistic workload 

behavior than many other research projects.  
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The HP Dynamo developed a simple but effective software hotspot detector. It counts branch 

target frequency while interpreting. Once a branch target exceeds the hot threshold, the interpreter 

forms a hot superblock using MRET (most recently executed tail) [13]. MRET captures frequent 

execution paths by probability, leading to a cheap and insightful profiler.  However, the branch-target 

counter table maintained by the interpreter causes overhead and pollutes data cache.  

5.4 Evaluation of Hardware Assists for Translation 
The evaluation of hardware assists for translation  was conducted with the x86vm simulation 

infrastructure.  Because translation overhead affects mostly the VM startup performance, this evalua-

tion focuses on how the assists improve VM startup behavior for Windows benchmarks.   

To compare startup performance with conventional superscalar designs and to illustrate how 

VM system startup performance can be improved by the hardware assists, we simulate the following 

machine configurations. Detailed configuration settings are provided in Table 5.4.  

 Ref: superscalar:   A conventional x86 processor design serves as the baseline / reference. This 

is a generic superscalar processor model that approximates current x86 processors.   

 VM.soft: Traditional co-designed VM scheme, with a software-only two-stage dynamic 

translator (BBT and SBT).  This is the state-of-the-art VM model.  

 VM.be: The co-designed x86 VM, equipped with pipeline backend functional units for the 

new XLTx86 instructions (Section 5.2).  

 VM.fe: The co-designed x86 VM, equipped with dual mode x86 decoders at the pipeline 

front-end to enable dual ISA execution. (Section 5.1).   
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Table 5.2   VM Startup Performance Simulation Configurations 
 Ref: superscalar VM.soft VM.be VM.fe  

BBT assisted by the 
backend HW 
decoder.  

HW Dual-mode 
decoders 

HW x86 decoders, 
no optimization 

Simple software 
BBT, no opts Cold x86 code    

HW x86 decoders, 
no optimization 

Software hotspot 
optimizations  

Perform the same hotspot optimization as 
in VM.soft, with HW assists.  Hotspot x86 code  

ROB, Issue buffer 36 issue queue slots, 128 ROB entries, 32 LD queue slots, 20 ST queue slots 

Physical Register 
File 

128 entries, 8 Read 
ports, 5 Write ports 

128 entries, 8 Read and 8 Write ports (2 Read and 2 Write 
ports are reserved for the 2 memory ports). 

Pipeline width 16B fetch width, 3-wide decode, rename, issue and retire.   

L1 I-cache: 64KB, 2-way, 64B lines, Latency: 2 cycles.     L1 D-cache, 64KB, 8-way, 
64B lines, Latency: 3 cycles.     L2 cache: 2MB, 8-way, 64B lines, Latency: 12 cycles Cache Hierarchy 

Memory Latency Main memory latency: 168 CPU-cycles. 1 memory cycle is 8 CPU core cycles. 

 

 

The hot threshold in the VM systems is determined by Equation 2 (Chapter 3) and benchmark 

characteristics.  For the Windows application traces benchmarked for this evaluation, all VM models 

VM.soft, VM.be and VM.fe, set the threshold at 8K. Note that the VM.fe and the Ref: superscalar 

schemes have a longer pipeline front-end due to the x86 decoders.  

To stress startup performance and other transient phases for translation-based VM systems, we 

run short traces randomly collected from the ten Windows applications taken from the WinStone2004 

Business benchmarks.  For studies focused on accumulated values such as benchmark characteristics, 

we simulate 100-million x86 instructions.  For studies that emphasize time variations, such as 

variation in IPC over time, we simulate 500-million x86 instructions and express time on a logarith-

mic scale.    All simulations are set up for testing the memory startup scenario (Scenario 2 described 

in Chapter 3) to stress VM specific runtime overhead.   
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Startup Performance Evaluation of the VM Systems 

Figure 5.5 illustrates the same startup performance comparison as Figure 3.1 in Chapter 3.  

Additionally, Figure 5.5 also shows startup performance for the VM models assisted by the proposed 

hardware accelerators. As before, the normalized IPC (harmonic mean) for the VM steady state is 

about 8% higher than the baseline superscalar in steady state.  

The VM system equipped with dual mode decoders at the pipeline front-end (VM.fe) shows 

practically a zero startup overhead; performance follows virtually the same startup curve as the 

baseline superscalar because they have very similar pipelines for cold code execution.  Once a hotspot 

is detected and optimized, the VM scheme starts to reap performance benefits. VM.fe reaches half the 

steady state performance gains (4%) in about 100-million cycles.  

The VM scheme equipped with a backend functional unit decoder (VM.be) also demonstrates 

good startup performance.   However, compared with the baseline superscalar, VM.be lags behind for 

the initial several millions of cycles. The breakeven point occurs at around 10-million cycles and the 

half performance gain point happens after 100-million cycles. After that, VM.be performs very 

similarly to the VM.fe scheme.   

Figure 5.6 shows, for each individual benchmark, the number of cycles a particular translation 

scheme needs to reach the first breakeven point with the reference superscalar. The x-axis shows the 

benchmark names and the y-axis shows the number of million cycles a VM model needs to breakeven 

with the reference superscalar model. We label bars that are higher than 200-million cycles (to break 

even) with their actual values. Otherwise, a bar that is higher than 200-million cycles (but without a 

value label) means its VM model did not breakeven within the 500-million x86-instruction trace 

simulation.     
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Figure 5.5   Startup performance: Co-Designed x86 VMs compared w/ Superscalar  
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Figure 5.6   Breakeven points for individual benchmarks  
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 It is clear from Figure 5.6 that, in most cases, using either the front-end or the backend assists 

can significantly reduce the VM startup overhead and enable VM schemes to break even with the 

reference superscalar within 50-million cycles.  However, for the Project benchmark, the VM 

schemes cannot break even within the tested runs, though they do follow the performance of the 

reference superscalar closely (within 5%). Further investigation indicates that the VM steady state 

performance for Project is only 3% better than the superscalar. Thus the VM schemes take a longer 

time to collect enough hotspot performance gains to compensate for the performance loss due to 

initial emulation and translation. 

It should be pointed out that, because of the different execution characteristics, VM systems 

may actually have multiple breakeven / crossover points for an individual benchmark’s startup curve. 

This is not evident from the average curves in Figure 5.5.  However, such transients occur even for 

systems using different memory hierarchies.  As programs run longer, the superior VM steady state 

performance will start to take over, making a crossover point unlikely to repeat.    

Performance Analysis of the Hardware Assists 

It is straightforward to evaluate the startup performance improvement for VM.fe because its 

x86-mode execution is very similar to that of a baseline superscalar. On the other hand, the VM.be 

scheme translates cold code in a co-designed way and still involves VM software.   Consequently, we 

investigate how VM software overhead is reduced after being assisted by the XLTx86 instruction.  

For background information, without hardware assist, the software-only baseline VM (VM.soft) 

spends on average 9.9% of its runtime performing BBT translation, during the first 100M dynamic 

x86 instructions,.  

 



   109

0

10

20

30

40

50

60

70

80

90

100

Acc
es

s
Exc

el

Fro
nt 

Pag
e IE

Nort
on

Outl
oo

k

Pow
erP

oin
t

Proj
ec

t

Winz
ip

Word

Ave
rag

e

Pe
rc

en
ta

ge
 o

f C
yc

le
s

BBT overhead BBT emu. 

 
Figure 5.7   BBT translation overhead and emulation cycle time  

(100M x86 instruction traces) 

 Figure 5.7 shows how VM cycles (for the VM.be scheme) are spent.   For each benchmark, the 

lower bars (BBT overhead) represent the percentage of VM cycles spent for BBT translation and the 

upper bars (BBT emu.) indicate the percentage of cycles the VM.be executes basic block translations. 

The rest of the cycles are mostly spent for SBT translation and emulation with the optimized native 

hotspot code. To stress startup overhead, the data is collected for the first 100M x86 instructions for 

each benchmark.    

It is evident from Figure 5.7 that after being assisted by the new XLTx86 instruction at the 

pipeline backend, the average BBT translation overhead is reduced to about 2.7%; about 5% at worst.  

Further measurements indicate that the software-only BBT spends 83 cycles to translate each x86-

instruction (including all BBT overhead, such as chaining and searching translation lookup table).  In 

contrast, VM.be needs only 20 cycles to do the same operations. 
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After BBT translation, the VM.be scheme spends 35% of its total cycles  (BBT.emu bars in Fig. 

10) executing BBT translations. The execution of BBT translations is less efficient than that of SBT 

translations.  However, this BBT emulation does not lose much performance because the BBT 

translations run fairly efficiently (On average 82~85% IPC performance of SBT optimized code).  

This IPC performance is only slightly less than the baseline superscalar design. And for program 

startup transients, cache misses tend to dilute CPU IPC performance differences.   

The rest of the VM.be cycles (VM.fe is similar) is spent in SBT translation (3.2%) and native 

execution with the SBT translations (59%).  The optimized SBT translations improve overall per-

formance by covering 63% of the 100-million dynamic x86 instructions.  For 500-million x86 

instruction runs, the hotspot coverage rises to 75+% on average and is projected to be higher for full 

benchmark runs.  

Energy Analysis of the Hardware Assists 

A software-based co-designed VM does not require complex x86 decoders in the pipeline as in 

conventional x86 processors. This can provide significant energy savings (one of the motivations for 

the Transmeta designs [54, 82]).   However, when hardware x86 decoder(s) are added as assists, they 

consume energy.  Fortunately, this energy consumption can be mitigated by powering off the hard-

ware assists when they are not in use.  

To estimate the energy consumption, we measure the activity of the hardware x86 decoding 

logic. The activity is defined as the percentage of cycles the decoding logic needs to be turned on. 

Figure 5.8 shows the x86 decoder activity for the four machine configurations. The x-axis shows the 

cycle time on logarithmic scale and the y-axis shows the aggregate decoding logic activity. This 

figure assumes that the decoders need to be turned on initially, as the system runs, the decoders can 

be turned on and off quickly based on usage.  
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Figure 5.8   Activity of hardware assists over the simulation time  

For most conventional x86 processors, x86 decoders are always on (Pentium 4 [58] is the only 

exception).  In contrast, for the VM.be scheme, the hardware assist activity quickly decreases after the 

first 10,000 cycles. It becomes negligible after 100-million cycles. Considering that only one decoder 

is needed to implement XLTx86 in the VM.be scheme, energy consumption due to x86 decoding is 

significantly mitigated.  For the VM.fe model, the dual mode decoders at the pipeline front-end need 

to be active whenever the VM is not executing optimized hotspot code (and the VMM code, to be 

more exact).  The decoders’ activity also decreases quickly, but much later than a VM.be scheme as 

illustrated in the figure.  Because the VM.fe scheme executes non-hotspot code rather than translating 

once (as in VM.be), it will be more demanding on the responsiveness of turning on and off the dual 

mode decoders.  
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5.5 Related Work on Hardware Assists for DBT 

In Section 5.4 we discussed on-the-fly profiling, which is an important part of VM DBT sys-

tems both for identifying hotspot code and for assisting with certain optimizations.  This section 

discusses related work on hardware assists for binary translation/optimization.  

The Transmeta Efficeon designers implemented an execute instruction that allows native 

VLIW instructions to be constructed and executed on-the-fly [83]. This capability was added to 

improve the performance of the CMS interpreter.  At the pipeline backend, there are two execution 

units added.  However, details about the new execution unit design are not published.  In contrast, we 

propose special hardware assists to accelerate the BBT translation and then save the translated code in 

a code cache for reuse.  

The fill unit [50, 95] is one of the early hardware proposals for runtime translation or optimiza-

tion. A fill unit is a non-architected transparent module that constructs a translation unit (typically, 

trace) and then performs limited optimization. The Intel Pentium 4 processor trace cache [58] is an 

implementation of a similar hardware scheme.  

The Instruction Path Coprocessor [25] is a programmable coprocessor that optimizes a core 

processor’s instructions to improve execution efficiency. The coprocessor is demonstrated to perform 

several common dynamic optimizations such as trace formation, trace scheduling, register-move 

optimization and prefetching.  A later proposal, PipeRench implementation of the instruction path 

coprocessor [26], reduces the complexity of the coprocessor design.      

Dynamic strands [110] employ a hardware engine to form ILDP strands [77] for a strand aware 

engine. CCG [27] and many other research proposals [2, 104, 114] assume a hardware module to 

perform runtime code optimization.  
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The rePLay [104] and PARROT [2] projects employ a hardware hotspot detector to find pro-

gram hotspots.  Once a hotspot is detected, it is optimized via hardware and stored in a small on-chip 

frame/trace cache for optimized hotspot execution. The hardware optimizer is a coprocessor-like 

module located after the retirement stage of the main processor pipeline. As hotspot instructions are 

detected and collected in a hotspot buffer, the optimizer can execute a special program, perhaps stored 

in an on-chip ROM similar to the micro-code stores [58, 74].  This special program is written in the 

optimizer’s small instruction set that consists of highly specialized operations such as pattern match-

ing and dependence edge tracking etc.  

In our research, we explore hardware assists that are integrated into the co-designed processor 

pipeline. This requires simpler hardware than a full-blown coprocessor or hardware optimizer. Yet, 

the software translator owns the full programmability of the main processor’s ISA. The translator 

runtime overhead is mitigated via the combination of strategies discussed in Chapter 3 and simple 

hardware assists discussed in this chapter.  Furthermore, in our VM system, translated code is held in 

a large main memory code cache. 
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Chapter 6  

Putting It All Together: A Co-Designed x86 VM  

In the previous three chapters, we explored and achieved promising results for some major 

components of a co-designed VM system, namely, a DBT translation strategy, translation software 

algorithms, and translation hardware assists.  However, individual component designs do not neces-

sarily combine together to produce an overall efficient system design.  To demonstrate a processor 

design paradigm, the most convincing evidence is a complete, integrated processor design that 

provides superior performance and efficiency.    

In this chapter, I explore system level design through synergetic integration of the technologies 

explored in the previous chapters. The detailed example design must tackle many thorny challenges 

for contemporary processors.   Section 6.1 discusses high level trade-offs for the co-designed x86 

processor architecture. Section 6.2 details the microarchitecture of the macro-op execution engine.   

Section 6.3 evaluates the integrated, hardware/software co-designed x86 processor within the limit of 

our x86vm framework.  Section 6.4 compares this design with the related real world processor designs 

and research proposals.     
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6.1 Processor Architecture 
There are a few especially difficult issues that pose challenges to future processor designs. First, 

processor efficiency (performance per transistor) is decreasing. Although performance is improving, 

but the improvements are not proportional to the amount of hardware resources and complexity 

invested. Additionally, the complexity of the design process itself is increasing.  Time-to-market 

tends to be longer today than a decade ago.  

Second, power consumption has become critical. Power consumption not only affects energy 

efficiency, but also affects many other cost aspects of system designs, for example, the extra design 

complexity for the power distribution system, cooling, and packaging. High power consumption also 

leads to thermal issues that affect system reliability and lifetime.  

Third, legacy features are making processor designs less efficient. As the x86 instruction set 

has become the de facto standard ISA for binary software distribution, efficient x86 design is becom-

ing more important. Moreover, as with most long term standard interfaces, the x86 contains legacy 

features that complicate hardware design if implemented directly in hardware.  Many of these legacy 

features are rarely used in modern software distributions.  

The primary objective for the example co-designed x86 processor presented here is an efficient 

design that brings higher performance at lower complexity. The overall design should tackle the 

design challenges listed above. Furthermore, for practical reasons, it is especially valuable for a 

design team to consider a design that carries minimum cost and risk for an initial attempt at a new 

implementation paradigm.  

Clearly, an enhanced and more efficient dynamic superscalar pipeline design is an attractive di-

rection to explore.  On one hand, dynamic superscalar is the best performing and the most widely 

microarchitecture for general purpose computing.  On the other hand, dynamic superscalar processors 
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are challenged by bottlenecks in several pipeline stages: for example, the fetch mechanism, the issue 

logic, and the execution/result forwarding datapath.   

I propose and explore the macro-op execution microarchitecture (detailed in Section 6.2) as an 

efficient execution engine.  It simplifies and streamlines the critical pipeline stages given in the 

preceding paragraph. It is not only an enhanced, but also a simplified dynamic superscalar micro-

architecture that implements the fusible ISA for efficiency.  Because it is a simplified superscalar 

pipeline, the hardware design is quite similar to current processor designs. Then, the remaining major 

processor design trade-off centers on dynamic binary translation which performs the mapping from 

the x86 ISA  to the fusible ISA.  

Figure 6.1 illustrates the trade-off between overall system complexity and DBT runtime over-

head.  A state-of-the-art VM design should use the software solution for DBT to emphasize simplicity 

for CPU intensive workloads.  A conventional high performance x86 processor design might select 

the hardware solution to avoid bad-case scenarios mentioned in Chapter 1.     

Complexity 

Runtime 
Overhead

Software
Solution   

Hardware
Solution   

Ideal   

Co-designed 
Solutions   

 
Figure 6.1   HW/SW Co-designed DBT Complexity/Overhead Trade-off 
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The preceding chapters have developed the key elements for a hardware/software co-designed 

DBT system.  In fact, there are multiple possible hardware assisted DBT systems and this is reflected 

in Figure 6.1.  For example, Chapter 5 proposed and evaluated two design points, dual mode decoders 

at the pipeline front-end and special functional unit(s) at the pipeline backend. Either of these can 

provide competitive startup performance as illustrated in Chapter 5.  

For the example x86 processor design, we choose the dual mode decoders because it has very 

competitive startup performance to conventional x86 processor designs. Furthermore, it provides a 

more smooth transition from conventional designs to the VM paradigm.  The downside is that this 

design point does not remove as much hardware complexity as the backend functional unit(s) solution. 

However, it does provide the same hotspot optimization capability as other VM design points.  And 

these runtime optimizations would be very expensive if implemented in hardware.  

Because the dual mode decoders have two modes for x86 and fusible ISA instructions, the 

macro-op execution pipeline is conceptually different for x86 mode and macro-op mode (Figure 6.2). 

The difference is due to the extra x86 vertical decode stages which first identify individual x86 

instructions, decode, and crack them into fusible ISA micro-ops. The VMM runtime controls the 

switch between these two modes. Initially, all x86 software runs through the x86 mode pipeline. Once 

hotspots are detected, the VMM transfers control to the optimized macro-op code for efficiency.    

Rename Dispatch wakeupFetch Align Payload RF Exe WB RetireDecode Select
x86

Decode2
X86

Decode1

Pipelined 2-cycle Issue Logic

Rename Dispatch wakeupFetch
Align/
Fuse

Payload RF Exe WB RetireDecode Select
Macro-op 

mode Pipeline 

x86 mode Pipeline

 
  Figure 6.2   Macro-op execution pipeline modes: x86-mode and macro-op mode  
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The x86 mode pipeline is very similar to current high performance x86 processors, except that 

the instruction scheduler is also pipelined for higher clock speed and reduced scheduler complexity.  

Compared with the macro-op mode pipeline, the additional x86 mode pipeline stages consume extra 

power for the x86 “vertical” decode and charge more penalty cycles for branch mispredictions.   

The macro-op mode pipeline is an enhanced dynamic superscalar processor for performance 

and efficiency.  The VMM runtime software and the code cache which holds translated and optimized 

macro-op code for hotspots occupy and conceal a small amount of physical memory from the system.  

However, because the dual mode co-designed processor does not need to handle startup translations, 

there is no need for a BBT code cache, which is much larger than the hotspot code cache.   The details 

of the macro-op execution pipeline are expanded upon in the next section.   

6.2 Microarchitecture Details 
The macro-op execution pipeline executes fused macro-ops throughout the entire macro-op 

mode pipeline. There are three key issues, macro-op fusing algorithms, macro-op formation, and 

macro-op execution. The co-designed VM software conducts macro-op fusing (Chapter 4).  The co-

designed hardware pipeline performs macro-op formation and macro-op execution at the pipeline 

front-end and backend respectively.   

6.2.1 Pipeline Frond-End: Macro-Op Formation 
The front-end of the pipeline (Figure 6.3) is responsible for fetching, decoding instructions, and 

renaming source and target register identifiers. To support processing macro-ops, the front-end fuses 

adjacent micro-ops based on the fusible bits marked by the dynamic binary translator. After the 

formation of macro-ops, the pipeline front-end also allocates bookkeeping resources such as ROB, 

LD/ST queue and issue queue slots.  
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Each cycle, the fetch stage brings in a 16-byte chunk of instruction bytes from L1 instruction 

cache. The effective fetch bandwidth, four to eight micro-ops per cycle, is a good match with the 

effectively wider pipeline backend.  After fetch, an align operation recognizes instruction boundaries.  

In x86 mode, x86 instructions are routed directly to the first level of the dual-mode decoders.  In 

macro-op mode, the handling of optimized native code is similar, but the complexity is lower due to 

dual-length 16-bit granularity micro-ops as opposed to arbitrary multi-length, byte-granularity x86 

instructions. Micro-ops bypass the first level of the decoders and go to the second level directly. The 

first bit of each micro-op, the fusible bit, indicates whether it should be fused with the immediately 

following micro-op. When a fused pair is indicated, the two micro-ops are aligned to a single pipeline 

lane, and they flow through the pipeline as a single entity.   

While fetching, branch predictors help determine the next fetch address. The proposed branch 

predictor is configured similarly to the one used in the AMD K8 Opteron processor [74].   Specifi-

cally, it combines a 16K-entry bimodal local predictor with a 16K-entry global history table via a 16K 
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Figure 6.3   The front-end of the macro-op execution pipeline  
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combining table. The global branch history is recorded by a 12-bit shift register. BTB tables are larger 

and more expensive, especially for 64-bit x86 implementations.  The BTB (4-way) has 4K entries and 

the RAS (return address stack) has 16 entries, larger than the AMD K8’s 2K BTB and 12-entry RAS.  

Both x86 branches and native branches are handled by this predictor.  

Instruction Decode 

In x86 mode, x86 instructions pass through both decode levels and take three or more cycles 

(similar to conventional x86 processors [37, 51, 74]) for instruction decoding and cracking.  For each 

pipeline lane, the dual mode decoder has two simple level-two micro-op decoders that can process up 

to two micro-ops cracked from an x86 instruction. As with most current x86 processors, complex x86 

instructions that crack into more than two micro-ops may need to be decoded alone for that cycle, and 

string instructions need a microcode table for decoding.  

In macro-op mode, RISC-style micro-ops pass through the second level decoding stage only 

and take one cycle to decode.  For each pipeline lane, there are two simple level-two micro-op 

decoders that handle pairs of micro-ops (a fused macro-op).  These micro-op decoders decode the 

head and tail of a macro-op independently of each other. Bypassing the level-one decoders results in 

an overall pipeline structure with fewer front-end stages when in macro-op mode than in x86 mode. 

The performance advantage of a shorter pipeline for macro-ops can be significant for workloads that 

have a significant number of branch mispredictions. 

After the decode stage, the micro-ops for both x86 mode and macro-ops look similar to the 

pipeline except that none of x86 mode micro-ops are fused.  Here, an interesting optimization, similar 

to one used in the Intel Pentium M decoders [51], is to use the level-one decoder stage(s) to fuse 

simple, consecutive micro-ops when in x86 mode.  However, this will add extra complexity and only 

benefit code infrequently.  This possibility is not implemented in our design here.    
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Rename and Macro-op Dependence Translation 

Fused macro-ops do not affect register value communication. Dependence checking and map 

table access for renaming are performed at the individual micro-op level.  Two micro-ops per lane are 

renamed.    However, macro-ops simplify the rename process (especially source operand renaming) 

because (1) the known dependence between a macro-op head and tail does not require intra-group 

dependence checking or a map table access, and (2) the total number of source operands per macro-op 

is two, which is the same for a single micro-op in a conventional pipeline.  

Macro-op dependence translation converts register names into macro-op names so that issue 

logic can keep track of dependences in a separate macro-op level name space. In fact, the hardware 

structure required for this translation is identical to that required for register renaming, except that a 

single name is allocated to two fused micro-ops. This type of dependence translation is already 

required for wired-OR-style wakeup logic that specifies register dependences in terms of issue queue 

entry numbers rather than physical register names. Moreover, this process is performed in parallel 

with register renaming and hence does not require an additional pipeline stage. Fused macro-ops need 

fewer macro-op names, thus reducing the power-intensive wakeup broadcasts in the scheduler.  

Dispatch 

Macro-ops check the most recent ready status of source operands and are inserted in program 

order into available issue queue(s) and ROB entries at the dispatch stage.  Memory accesses are also 

inserted into LD/ST queue(s). Because the two micro-ops in a fused pair have at most two source 

operands and occupy a single issue queue slot, complexity of the dispatch unit can be significantly 

reduced; i.e. fewer dispatch paths are required versus a conventional design.  In parallel with dispatch, 

the physical register identifiers, immediate values, opcodes as well as other book-keeping information 

are stored in the payload RAM [21].  
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6.2.2 Pipeline Back-End: Macro-Op Execution 
The back-end of the macro-op execution pipeline performs out-of-order dataflow execution by 

scheduling and executing macro-ops as soon as their source values become available. This kernel part 

of a dynamic superscalar engine integrates several unique execution features.   

Instruction (Macro--op) Scheduler 

The macro-op scheduler (issue logic) is pipelined [81] and can issue back-to-back dependent 

macro-ops every two cycles. However, because each macro-op contains two dependent micro-ops, the 

net effect is the same as a conventional scheduler issuing back-to-back micro-ops every cycle. 

Moreover, the issue logic wakes up and selects at the macro-op granularity, so the number of wakeup 

tag broadcasts is reduced for energy efficiency.  

Because the macro-op execution pipeline processes macro-ops throughout the entire pipeline, 

the scheduler achieves an extra benefit of higher issue bandwidth by eliminating the sequencing point 

at the payload RAM stage as proposed in [81]. Thus, it eliminates the necessity of blocking the select 

logic for macro-op tail micro-ops. 

Operand fetch: Payload RAM Access and Register File 

After issue, a macro-op accesses the payload RAM to acquire the physical register identifiers, 

opcode(s) and other necessary information needed for execution. Each payload RAM line has two 

entries for the two micro-ops fused into a macro-op. Although this configuration will increase the 

number of bits to be accessed by a single request, the two operations in a macro-op use only a single 

port for both read (the payload stage) and write (the dispatch stage) accesses, increasing the effective 

bandwidth.  For example, a 3-wide dispatch / execution machine configuration has three read and 

three write ports that support up to six micro-ops in parallel. 
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A macro-op accesses the physical register file to fetch the source operand values for two fused 

operations.   Because the maximum number of source registers in a macro-op is limited to two by the 

dynamic binary translator, the read bandwidth is the same as for a single micro-op in a conventional 

implementation.  Fused macro-ops better utilize register read ports by fetching an operand only once 

if it appears in both the head and tail, and increasing the probability that both register identifiers of a 

macro-op are actually used.  Furthermore, because we decided to employ collapsed 3-1 ALU units at 

the execution stage (described in the next subsection), the tail micro-op does not need the result value 

produced by the macro-op head to be passed through either the register file or an operand forwarding 

network.  

Our macro-op mode does not improve register write port utilization, and requires the same 

number of ports as a conventional machine with an equivalent number of functional units. However, 

macro-op execution can be extended to reduce write port requirements by analyzing the liveness of 

register values at binary translation time. We leave this to future work. In fact, as the fusing profile 

indicates, only 6% of all instruction entities in the macro-op execution pipeline actually need to write 

two destination registers (Section 4.7 and [63]). 

Execution and Bypass Network 

Figure 6.4 illustrates the data paths in a 3-wide macro-op pipeline. When a macro-op reaches 

the execution stage, the macro-op head is executed in a normal ALU.   In parallel, the source oper-

ands for both head and tail (if a tail exists) micro-ops are routed to a collapsed 3-1 ALU [71, 91, 106] 

to generate the tail value in a single cycle.  Although it finishes execution of two dependent ALU 

operations in one step, a collapsed 3-1 ALU increases the number of gate levels by at most one 

compared with a 2-1 normal ALU [92, 106].    
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For a conventional superscalar execution engine with n ALUs, the ALU-to-ALU bypass net-

work needs to connect all n ALU outputs to all 2*n inputs of the ALUs.   Each bypass path needs to 

drive at least 2*n loads. Typically there are also bypass paths from other functional units such as 

memory ports. The implication is two-fold. (1) The consequent multiple input sources (more than 

n+3) at each input of the ALUs necessitate a complex MUX network and control logic. (2) The big 

fan-out at each ALU output means large load capacitance and wire routing that leads to long wire 

delays and extra power consumption. To make the matter worse, as operands are extended to 64-bit, 

the ALU areas and wires also increase significantly.  In fact, wire issues and pressures on register file 

led the DEC Alpha EV6 [75] to adopt a clustered microarchitecture design and the literature verifies 

that the bypass latency takes a significant fraction of ALU execution cycle [48, 102]. There is a 

substantial body of related work (e.g. [46, 77, 102]) that addresses such wiring issues. 
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Figure 6.4   Datapath for Macro-op Execution (3-wide)  
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The novel combination of a 2-cycle pipelined scheduler and 3-1 collapsed ALUs enables the 

removal of the expensive ALU-to-ALU operand bypass network without IPC performance penalty.   

Because all the head and tail ALU operations are finished in one cycle; there is no need to forward the 

newly generated result operands to the inputs of the ALU(s) since tail operations finished one cycle 

sooner than the dataflow graph and dependent operations are not yet scheduled by the pipelined issue 

logic.  There is essentially an “extra” cycle for writing results back to the register file.  The removal 

of the operand forwarding/bypass network among single-cycle ALUs reduces pipeline complexity 

and power consumption.  

Functional units that have multiple cycle latencies, e.g. cache ports, still need a bypass network 

as highlighted in Figure 6.4.   However, the complexity of the bypass paths for macro-op execution is 

much simpler than a conventional processor.  In macro-op execution, the bypass network only 

connects outputs (from multi-cycle functional units) to inputs of the ALU(s).   In contrast, a conven-

tional superscalar design having a full bypass network needs to connect across all input and output 

ports for all functional units.  

Figure 6.5 represents resources and effective execution timings for different types of micro-ops 

and macro-ops; S represents a single-cycle micro-op; L represents a multi-cycle micro-op, e.g., a 

load, which is composed of an address generation and a cache port access.   Macro-ops that fuse 

conditional branches with their condition test operations will resolve the branches one cycle earlier 

than a conventional design.  Macro-ops with fused address calculation ALU-ops finish address 

generation one cycle earlier for the LD/ST queues.  These are especially effective for the x86 where 

complex addressing modes exist and conditional branches need separate test or compare operations to 

set condition codes.  Early address resolution helps memory disambiguation, resulting in fewer 

expensive replays due to detected memory consistency violations in multiprocessors.  
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Writeback  

After execution, values generated by ALU operations are written back to the register file via 

reserved register write ports.  Memory accesses are different; a LD operation may miss in the cache 

hierarchy and a ST operation may only commit values to memory after the ST has retired. As with 

most modern processors [37, 51, 58, 74], the macro-op execution pipeline has two memory ports.  

Therefore, two register write ports are reserved for LD operations and two register read ports are 

reserved for ST operations.   

Instruction Retirement 

The reorder buffer performs retirement at macro-op granularity, which reduces the overhead of 

tracking the status of individual instructions. This retirement policy does not complicate branch 

misprediction recovery because a branch does not produce a value, thus it is not fused as a head in a 

macro-op.  In the event of a trap, the virtual machine software is invoked to assist precise exception 

handling for any aggressive optimizations by reconstructing the precise x86 state (using side tables or 

de-optimization) [85].  Therefore, the VM runtime software can also enable aggressive optimiza-

tion(s) without losing intrinsic binary compatibility. 
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6.3 Evaluation of the Co-Designed x86 processor  

Pipeline models 

To analyze and compare the co-designed processor with conventional x86 superscalar designs, 

I simulated two primary microarchitecture models.  The first, baseline, models a conventional 

dynamic superscalar design with single-cycle issue logic.  The second model, labeled macro-op, is the 

proposed co-designed x86 microarchitecture.  Simulation results were also collected for a version of 

the baseline model with pipelined two-cycle issue logic, which can be used to estimate the x86 mode 

operation (startup behavior) of the dual mode co-designed x86 processor.  

The baseline model attempts to capture the performance characteristics similar to a Pentium-M 

or AMD K7/K8 implementation. However, we were only able to simulate an approximation of these 

best performing x86 processors.  First, the baseline model uses fusible ISA micro-ops instead of the 

proprietary  Intel or AMD micro-ops (which we do not have access to for obvious reasons).  Also it 

does not fuse micro-ops the way Pentium M does, strictly speaking, but rather has significantly wider 

front-end resources to provide a performance effect similar to Pentium-M micro-op fusion or AMD 

Macro-Operation.  In the baseline model, an “n-wide” baseline front-end can crack up to n x86 

instructions per cycle, producing up to 1.5 * n micro-ops which are then passed up a 1.5*n wide 

pipeline front-end.  For example, the four-wide baseline can crack four x86 instructions into up to six 

micro-ops, which are then passed through the front-end pipeline. The micro-ops in the baseline model 

are scheduled and issued separately as in the current AMD or Intel x86 processors. 

Microarchitectural resources for the three microarchitectures are listed in Table 6.1. Note that 

we reserve two register read ports for stores and reserve two write ports for loads   We simulated two 

pipeline widths (3,4) for the baseline models and three widths (2,3,4) for the co-designed x86 proces-

sor model featuring macro-op execution. 
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Table 6.1   Microarchitecture Configurations  

BASELINE MACRO-OP  BASELINE PIPELINED 

ROB Size 128 128 128 

Retire width 3,4 3,4 2,3,4 macro-ops  

Scheduler Pipeline 
Stages 1 2 2 

Fuse RISC-ops? No No Yes 

Issue Width 3,4 3,4 2,3,4 macro-ops  

Variable. Sample points:  from 16, up to 64.  Effectively larger for the 
macro-op mode. Issue Window Size 

Functional Units 4,6,8 integer ALU, 2 MEM R/W ports, 2 FP ALU 

128 entries, 6,8,10 Read 
6,8,10 Write  ports Register File 128 entries, 8,10 Read ports, 5,6 Write ports 

16B fusible micro-ops Fetch width 16-Bytes x86 instructions 

  L1 I-cache: 4-way 32KB, 64B cache lines latency: 2 cycles.  
Cache Hierarchy   L1 D-cache: 4-way 32KB, 64B lines, latency: 2 cycles + 1 cycle AGU.  

  L2 cache (unified): 8-way 1 MB, 64B cache lines, latency: 8 cycles.   

Memory Latency 200 CPU cycles  One memory cycle is 8 CPU clock cycles 
 

Performance 

SPEC2000 is a standard benchmark for evaluating CPU performance, Figure 6.6 first shows 

the relative IPC performance for SPEC2000 integer benchmarks. The x-axis shows issue window 

sizes ranging from 16 to 64.  The y-axis shows IPC performance that is normalized with respect to a 

4-wide baseline x86 processor with a size 32 issue window (These normalized IPC values are close to 

the absolute values; the harmonic mean of absolute x86 IPC is 0.95 for the 4-wide baseline with issue 

window size 32).  Five bars are presented for configurations of 2, 3, and 4-wide macro-op execution 

model; 3 and 4-wide baseline superscalar.  
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Figure 6.6   IPC performance comparison (SPEC2000 integer) 

If we first focus on complexity effectiveness, we observe that the two-wide co-designed x86 

implementation performs at approximately the same IPC level as the four-wide baseline processor. 

The two-wide macro-op model has approximately same level of complexity as a conventional two-

wide machine. The only exceptions are stages where individual micro-ops require independent 

parallel processing elements, i.e. ALUs.  Furthermore, the co-designed x86 processor pipelines the 

issue stage by processing macro-ops.  Hence, we can argue that the macro-op model should be able to 

support either a significantly higher clock frequency or a larger issue window for a fixed frequency, 

thus giving the same or better IPC performance as a conventional four-wide processor.   It assumes no 

deeper a pipeline than the baseline model, and in fact it reduces pipeline depth for steady state by 

removing the complex first-level x86 decoding/cracking stages from the critical branch misprediction 

redirect path. On the other hand, if we pipeline the issue logic in the baseline design for a faster clock, 

there is an average IPC performance loss at about 5%.  
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If we consider the performance data in terms of IPC alone, the four-wide co-designed x86 

processor performs nearly 20% better than the baseline four-wide superscalar primarily due to its 

runtime binary optimization and its efficient macro-op execution engine which has an effectively 

larger window and issue width. As illustrated in Section 4.7, macro-op fusing increases operation 

granularity by 1.4 for SPEC2000 integer benchmarks. We also observe that the four-wide co-designed 

x86 pipeline performs no more than 4% better than the three-wide co-designed x86 pipeline and the 

extra complexity involved, for example, in renaming and register ports, may make the three-wide 

configuration more desirable for high performance.  

On the other hand, such superior CPU performance will be harder to achieve for whole system 

workloads such as the WinStone2004 because system workloads also stress other system resources, 

for example, memory system, I/O devices and OS kernel services. The improved CPU performance 

will be diluted.   

Figure 6.7 plots the same IPC performance for whole system Windows application traces col-

lected from WinStone2004. The performance test runs are 500M x86 instructions. Clearly, the co-

designed VM system performance improvement is less than for SPEC2000, though still significant. 

And there are two further observations for the Windows workloads.  

The first is that the whole VM system performance is diluted by the startup phase. VM IPC 

performance is improved by about 5% (4-wide), rather than the 8% IPC improvement for hotspot 

code alone.  In contrast, the hotspot IPC performance figure for SPEC2000 is essentially the same as 

the whole VM system IPC performance.  As pointed out previously, the Windows workloads tend to 

have a larger code footprint that will cause more VM startup overhead and collect less hotspot 

benefits than SPEC2000 benchmarks.   
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Figure 6.7   IPC performance comparison (WinStone2004) 

The second observation is that the IPC performance improvement for a two-wide macro-op 

execution engine can match a three-wide baseline, but not a four-wide baseline as for SPEC2000. 

This is mainly caused by fewer fused macro-ops for the WinStone2004 Business Suite. Otherwise, 

the IPC performance trends look very similar to that for SPEC2000.  

The major performance-boosting feature in the co-designed x86 processor is macro-op fusing 

which is performed by the dynamic translator. The macro-op fusing data presented in Section 4.7 

illustrated that on average, 56% of all dynamic micro-ops are fused into macro-ops for SPEC2000, 

and 48% for Windows applications. Most of the non-fused operations are loads, stores, branches, 

floating point and NOPs. Non-fused single-cycle integer ALU micro-ops are only 6~8% of the total, 

thus greatly reducing the penalty due to pipelining the issue logic.  
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Performance experiments were also conducted with the single-pass fusing algorithm in [62]. 

And it actually shows average IPC slowdowns for SPEC2000 when compared with a baseline at the 

same width. The greedy fusing algorithm there does not prioritize critical dependences and single-

cycle ALU operations.   For Windows applications, single-pass fusing can approach the IPC perform-

ance of a same-width baseline.   

Performance Analysis   

In the co-designed x86 microarchitecture, a number of features all combine to improve per-

formance. The major reasons for performance improvement are the following. 

 Fusing of dependent operations allows a larger effective window size and issue width, which is 

one of our primary objectives.  

 Re-laying out code in profile-based superblocks leads to more efficient instruction delivery due 

to better cache locality and increased straight-line fetching. Superblocks are an indirect benefit 

of the co-designed VM approach. The advantages of superblocks may be somewhat offset by 

replicated code, however, due to the code duplication that occurs as superblocks are formed. 

 Fused operations lead naturally to collapsed ALUs having a single cycle latency for dependent 

instruction pairs.  Due to pipelined (two cycle) instruction issue queue(s), the primary benefit is 

simplified result forwarding logic, not IPC performance.   However, there are some perform-

ance advantages because the latency for resolving conditional branch outcomes and the latency 

of address calculation for load/store instructions are sometimes reduced by a cycle.  

 Because the macro-op mode pipeline only has to deal with RISC-style micro-ops, the pipeline 

front-end is shorter due to fewer decoding stages. 



   134

Because speedups come from multiple sources, we simulated a variety of microarchitectures in 

order to separate the performance gains from each of the sources. 

0. Baseline: as before 

1. M0:  Baseline plus superblock formation and code caching (but no translation). 

2. M1:   M0 plus fused macro-ops; the pipeline length is unchanged. 

3. M2:  M1 with a shortened front-end pipeline to reflect the simplified decoders for macro-op 

mode.  

4. Macro-op: as before – M2 plus collapsed 3-1 ALU. 

All of these configurations were simulated for the four-wide co-designed x86 processor con-

figuration featuring the macro-op execution engine, and results are normalized with respect to the 

four-wide baseline (Figure 6.8).   

The M0 configuration shows how a hotspot code cache helps improve performance via code 

re-layout. The average improvement is nearly 4% for SPEC2000 and 1% for WinStone2004. Of 

course, one could get similar improvement by static feedback directed re-compilation, but this is not 

commonly done in practice, and with the co-designed VM approach it happens automatically for all 

binaries.  

It is important to note that in the M0, the code has not been translated.  There are two types of 

code expansions that can take place (1) code expansion due to superblock tail duplication, (2) code 

expansion due to translation.  Hence, only the first type of expansion is reflected in the M0 design. 

The reason for using the M0 design point (superblock formation for a conventional superscalar) was 

so that the fused design does not get "credit" for code straightening when the other optimizations are 

applied. Performance effects of code expansion due to translation are counted in the M1 bar.   



   135

-10

0

10

20

30

40

50

60

70

16
4.g

zip
 

17
5.v

pr 
17

6.g
cc 

18
1.m

cf 
18

6.c
raf

ty 
19

7.p
ars

er 
25

2.e
on

 
25

3.p
erl

bm
k 

25
4.g

ap
 

25
5.v

ort
ex

 
25

6.b
zip

2 
30

0.t
wo

lf 
Ha

rm
on

ic

No
ma

rliz
ed

 IP
C 

sp
ee

du
p (

%
)

M0: Base + Code Cache M1:= M0 + fusing M2:= M1 + shorter pipe Macro-op:= M2 + 3-1 ALU 

 
(a) SPEC2000 integer 

-1 0

-5

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

Acc
es

s

Exc
el

Fr
on

t P
ag

e IE

Nor
ton

Out
loo

k
Pow

er
Poin

t

Pro
jec

t

W
inz

ip

W
or

d
Har

m
on

ic

N
om

ar
liz

ed
 IP

C
 s

pe
ed

up
 (%

)

M 0 : B a s e+ C o d e  $ M 1 :=  M 0  +  f u sing M 2 :=  M 1  +  sh o r te r pipe M a cr o -o p :=  M 2  +  3 -1  A L U  

 
(b) WinStone2004 Business Suites  

Figure 6.8   Contributing factors for IPC improvement  
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The performance of M1 (when compared with M0) illustrates the gain due mainly to macro-op 

fusion. This is the major contributor to IPC improvements and is more than 10% on average for 

SPEC2000. For WinStone2004, the fusing compensates for most of the negative performance effects 

due to the pipelined scheduler and improves over baseline superscalar by 3%.   

With regard to translation expansion, the second type of expansion noted above, the translated 

code is 30~40% bigger than the x86 code. However, in SPEC2000 integer, only gcc, crafty, eon and 

vortex are sensitive to code expansion with the 32K L1 I-cache. Other benchmarks show close to zero 

I-cache miss rates for baselines and VM models.  For gcc, crafty, eon and vortex, VM models have 

higher I-cache miss rates. This observation helps to explain the IPC loss for crafty, for example.  

The average performance gain due to a shortened decode pipeline is nearly 1% for SPEC2000. 

However, this gain will be higher for applications where branches are less predictable.  For example, 

for WinStone2004, it is about 2%.  

Finally, the performance benefit due to a collapsed ALU is about 2.5% for SPEC2000 and 1% 

for WinStone2004. As noted earlier these gains are from reduced latencies for some branches and 

loads because the ALU result feeding these operations is available a cycle sooner than in a conven-

tional design.  

The major performance gains are primarily due to macro-op fusing. These gains are not neces-

sarily due to the specific types of instructions that are fused, rather they are due to the reduced 

number of separate instruction entities that must be processed by the pipeline. For example, two fused 

uops become a single instruction entity as far as the issue logic (and most other parts of the pipeline 

are concerned). Fusing 56% uops is similar (in terms of performance) to removing 28% uops without 

breaking correctness. Of course, other factors can affect the eventual performance gains related to 

fusing, for example, memory latency, branch mispredictions, etc.   
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In general, fused uops do not affect path lengths in the dataflow graph; however there are cer-

tain cases where they may increase or decrease path lengths (thereby adding or reducing latency). 

Cases of reduced latency (for some branches and loads) are mentioned above. Increased latency can 

occur, for example, when the head result feeds some other operation besides the tail, and the head is 

delayed because an input operand to the tail is not ready. Additionally, the pipelined scheduler may 

sometimes introduce an extra cycle for the 6~8% single-cycle ALU-ops that are not fused.  Figure 6.8 

also shows that our simple and fast runtime fusing heuristics may still cause slowdowns for bench-

marks such as parser in SPEC2000 and access and project in WinStone2004. The speedup for a 

benchmark is mainly determined by its runtime characteristics and by how well the fusing heuristics 

work for it.  

We also should make some observations for memory intensive benchmarks, particularly mcf 

and gap in SPEC2000. With our memory hierarchy configuration and the SPEC test input data set, 

there are 5.3 L2 cache misses per 1000 x86 instructions for the mcf x86 binary.  This number is 

significantly lower than for the larger SPEC reference input data set.  Hence, in our simulations, the 

poor memory performance typical of mcf does not overwhelm gains due to macro-op fusing as one 

might expect.  On the other hand, the benchmark gap shows 19 L2 misses per 1000 x86 instructions, 

and performance improvements for gap are quite low. 
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Code Cache Footprint Analysis   

The co-designed x86 processor improves performance at the cost of some extra concealed 

physical memory space.  The major part of the hidden memory area is allocated for the code cache 

that holds translated native code.  Therefore, it is important to estimate the required code cache size. 

Such a characterization is more difficult than it may appear - it needs to track execution of trillions of 

instructions that run minutes or hours on real whole computer systems.  With our infrastructure, we 

were only able to provide some evidence based on short simulations and it is shown in Figure 6.9.  

Figure 6.9 shows how code cache footprints increase for the VM models listed in Table 5.4, 

Chapter 5.  The x-axis shows the time in terms of cycles and it is on logarithmic scale. The y-axis 

shows code cache footprint in terms of bytes and it is also on logarithmic scale.  All curves are 

averages over the benchmarks in the SPEC2000 and WinStone2004 suites respectively.   

All models have increasing code cache footprint as workloads proceed. However, it is clear 

that for all models, the footprint increase slows down and begins flattening.  Different VM models 

have different code cache footprints.  A state-of-the-art VM such as the VM.soft model would take, on 

average, about 1MB for the 500M x86 instruction runs and 250KB for complete SPEC2000 test runs. 

On the other hand, because our example design (discussed in this chapter and labeled as VM.fe in the 

figure) has x86 mode to filter cold code, the co-designed x86 processor has a significantly smaller 

code cache footprint (0.1MB or less), only for hotspots.  It is important to note that, based on Equa-

tion 2 in Chapter 3, the hotspot threshold is set at 4K for the SPEC2000 integer benchmarks and 8K 

for the WinStone2004 Business suite because they have different steady state IPC performance 

speedups, 18% versus 8% over the superscalar baseline.  
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Figure 6.9   Code cache footprint of the co-designed x86 processors  



   140

Discussion  

Without a detailed circuit level implementation of the proposed processor, some characteristics 

are hard to evaluate.  For example, the potentially faster clock that results from pipelined issue logic 

and removal of the ALU-to-ALU bypass network.  

At the same pipeline width, the macro-op pipeline needs more transistors for some stages, e.g. 

ALUs, Payload RAM table and some profiling support.   However, we reduce some critical imple-

mentation issues (bypass, issue queue).  Fused macro-ops reduce instruction traffic through the 

pipeline and can reduce pipeline width, leading to better complexity effectiveness and power effi-

ciency. 

 

6.4 Related Work on CISC (x86) Processor Design  
Real world x86 processors  

In virtually every design, decoder logic in high performance x86 implementations decomposes 

x86 instructions into one or more RISC-style micro-ops. The Cyrix 6x86 processor design [90] 

attempts to keep together all parts of an x86 instruction as it passes through its seven processing 

stages, though micro-ops are scheduled and executed separately. Some recent x86 implementations 

also have gone in the direction of more coarse-grained internal operations in certain pipeline stages. 

The AMD’s K7/K8 microarchitecture [37, 74] maps x86 instructions to internal Macro-Operations 

that are designed to reduce the dynamic operation count.   The front-end pipeline of the Intel Pentium 

M microarchitecture [51] fuses ALU operations with memory stores, and memory loads with ALU 

operations as specified in the original x86 instructions.  The Pentium M processors also use a “stack 

engine” [16, 51] to optimize stack address calculations.  However, the operations in each pair are still 

individually scheduled and executed in the core pipeline backend.  
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The fundamental difference between our fused macro-ops and the AMD and Intel coarse-grain 

internal operations is that our macro-ops combine pairs of operations that  (1) are suitable for process-

ing as single entities for the entire pipeline, including 2-cycle pipelined issue logic, collapsed 3-1 

ALU(s) and a much simplified operand forwarding network; and (2) can be taken from different x86 

instructions -- as our data shows, more than 70% of the fused macro-ops combine operations from 

different x86 instructions. In contrast, AMD K7/K8 and Intel Pentium M group only micro-operations 

already contained in a single x86 instruction.   In a sense, one could argue that rather than “fusing”, 

these implementations actually employ “reduced splitting”.   In addition, these x86 implementations 

maintain the fused operations for only part of the processor pipeline.  For example, their individual 

micro-ops are scheduled separately by single-cycle atomic issue logic.   

Macro-op execution     

The macro-op execution microarchitecture evolved from prior work on coarse-grained instruc-

tion scheduling and execution [80, 81] and a dynamic binary translation approach for fusing depend-

ent instruction pairs [62]. The work on coarse-grained scheduling [81] proposed hardware-based 

grouping of pairs of dependent RISC (Alpha) instructions into macro-ops to achieve pipelined 

instruction scheduling.  The work on instruction fusing [62] proposed using single-pass fusing 

algorithm to efficiently fuse dependent micro-ops.   

Compared with the hardware approach in [80, 81], we remove considerable complexity from 

the hardware pipeline and enable more sophisticated fusing heuristics, resulting in a larger number of 

fused macro-ops.  Furthermore, in this thesis, we propose a new pipeline microarchitecture.  For 

example, the front-end features a dual-mode x86 decoder, and the backend execution engine uniquely 

couples collapsed 3-1 ALUs with a 2-cycle pipelined macro-op scheduler to simplify the operand 

forwarding network.  
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Compared with the work in [62], I discovered a more advanced fusing algorithm than the sin-

gle-pass algorithm in [62]. It is based on the observations that it is easier to determine dependence 

criticality of ALU-ops and fused ALU-ops better match the capabilities of a collapsed ALU.  Finally, 

a major contribution over prior work is that I extend macro-op processing to the entire processor 

pipeline, realizing 4-wide superscalar performance with a 2-wide macro-op pipeline.   

There are a number of other related research projects. Instruction-level distributed processing 

(ILDP) [77] carries the principle of combining dependent operations (strands) further than instruction 

pairs. However, instructions are not fused, and the highly clustered microarchitecture is considerably 

different from the one proposed here. Dynamic Strands [110] use intensive hardware to form strands 

and involves major changes to superscalar pipeline stages, e.g. issue queue slots need more register 

tags for potentially (n+1) source registers of an n-ops strand. It is evaluated with the MIPS-like PISA 

[23] ISA.  

The IBM POWER4/5 processors also group five micro-ops (decoded and sometimes cracked 

from PowerPC instructions) into a  single unit for the pipeline front-end only. The five micro-ops are 

close to a basic block granularity, and instruction tracking through the pipeline is greatly reduced.   

The Dataflow Mini-Graph [20] collapses multiple instructions in a small dataflow graph and 

evaluates performance with Alpha binaries.  However, this approach needs static compiler support.  

Such a static approach is much more difficult (if it is even possible) for x86 binaries because variable 

length instructions and embedded data lead to extremely complex code “discovery” problems [61].  

CCA, as proposed in [27], either needs a very complex hardware fill unit to discover instruction 

groups or needs to generate new binaries, and thus will have difficulties in maintaining x86 binary 

compatibility.  
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The fill unit in [50] also collapses some instruction patterns.  Continuous Optimization [44] 

and RENO [105] present novel dynamic optimizations at the rename stage. By completely removing 

some dynamic instructions (also performed in [45] by a hardware-based frame optimizer), they 

achieve some of the performance effects as fused macro-ops. Some of their optimizations are com-

patible with macro-op fusing. PARROT [2] is another hardware-based IA-32 dynamic optimization 

system capable of various optimizations.  

Compared with these hardware-intensive optimizing schemes, our co-designed VM scheme 

strives for co-designed microarchitecture and software to reduce hardware complexity and power 

consumption.  Perhaps more importantly, the co-designed VM paradigm enables more architecture 

innovations than hardware-only dynamic optimizers. Additionally, a software-based solution has 

more flexibility and scope when dealing with optimizations for a future novel architecture and subtle 

compatibility issues, especially involving traps [85].   

Comparison of Co-designed virtual machine systems    

Because the co-designed virtual machine paradigm is promising for future CISC x86 processor 

design, we compare several existing co-designed virtual machine systems, including the co-designed 

x86 virtual machines explored in this dissertation. Table 6.2 lists the comparisons for major VM 

aspects such as Architected ISA, implementation ISA, underlying microarchitecture and translation 

mechanisms.   

It is clear from the table that different design goals result in different design trade-offs.   For 

example, if competitive high performance (with conventional processor designs) for general-purpose 

computing is not the design goal, then startup performance is not critical.  The removed hardware 

circuits help to reduce complexity and power consumption as exemplified by Transmeta x86 proces-

sor designs.   
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Table 6.2   Comparison of Co-Designed Virtual Machines 

CO-DESIGNED 
VIRTUAL 
MACHINES 

TRANSMETA 
CRUSOE / 
EFFICON 

IBM 
DAISY/BOA IBM AS/400 WISC ILDP WISC X86VM 

High Performance  
Server Processor  

Low Power and 
Low Complexity  

Efficiency and 
Low Complexity 

Design Paradigm 
for Efficiency  ISA Flexibility Design Goal 

Machine Interface PowerPC x86 Alpha x86 Architected ISA 

CISC IMPI. Later: 
PowerPC 

VLIW is selected as the execution engine for IBM DAISY/BOA and Transmeta co-designed 

x86 processors.  However, all the other VM systems implement a superscalar or a similar microarchi-

tecture (ILDP and macro-op execution) that is capable of dynamic instruction scheduling.  This is 

especially important for today’s unpredictable memory hierarchy behavior and its performance 

impact. 

 

Implementation ISA VLIW VLIW ILDP Fusible ISA 
(RISC-style) 

Superscalar VLIW (8/6-wide) VLIW (4/8-wide) ILDP Macro-op EXE  Microarchitecture 

Interpreter.  Interpreter / BBT Interpreter BBT or Dual-mode Initial Emulation 

Initial Emulation:  

HW Assist  
No evidence Efficeon: HW 

Assists interpreter No  XLTx86 / Dual 
Mode Decoder 

Hotspot Detection Software Software?  Software Hardware 

Program 
Translation is not 
transparent. It is 

performed at load 
time.  

Hotspot Optimization Software Software  Software Software  
 

Translated code 
can be persistent 

for later reuse.  Hotspot Optimization   Special  new 
Instructions  No evidence Unknown No 

HW Assist  

Other unique features   
HW support for 

speculative VLIW 
LD/ST reordering 

HW Assist Indirect 
Control Transfer  
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Chapter 7  

Conclusions and Future Directions 

The co-designed virtual machine paradigm has a long history dating back at least to the IBM 

System 38 [17] and AS/400 systems [12].  From its conception, the co-designed VM paradigm has 

been intended to handle machine interface complexities via its versatility.  It has motivated pioneer 

projects from IBM, Transmeta and a few others.  However, due to technical challenges and non-

technical inertia, the application of this paradigm is still quite limited.   

As the two fundamental computer architecture elements (ever-expanding applications and ever-

evolving implementation technology) continue, perhaps it will no longer be possible to avoid the 

challenge of running a huge body of standard ISA software on future novel architectures.  The co-

designed VM paradigm carries the potential to mitigate such a fundamental tension for architecture 

innovations.  

In this thesis, I have followed the pioneers’ insight and have attempted to tackle the challenges 

they faced. The objective is a systematic research of the co-designed VM paradigm.  During the thesis 

research, I conquered obstacles and made a number of discoveries.  In this final chapter, I summarize 

the findings and conclude in Section 7.1.  The encouraging conclusions suggest continuing research 

effort, and I discuss future directions in Section 7.2 which intends to justify investment in and 

application of the paradigm.  Finally, Section 7.3 contains some reflections. 
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7.1 Research Summary and Conclusions 
To evaluate a design paradigm for computer systems, the following three aspects are funda-

mental: capability, performance, and complexity or cost effectiveness.  The entire thesis research is 

summarized and evaluated according to these three dimensions.  

Capability 

It is software that provides eventual solutions to computing problems.  Therefore, binary com-

patibility practically implies capability, that is, the ability to run the huge body of available software 

distributed in standard binary formats, usually a widely used legacy ISA such as the x86.  The 

pioneers from IBM and Transmeta have already proved the fundamental aspect that the hardware/ 

software co-designed VM paradigm can maintain 100% binary compatibility.     

In this thesis, we did not extensively discuss this most important issue.  However, in the ex-

perimental study, I did not encounter any significant obstacle regarding compatibility.  Perhaps the 

real question boils down to emulation efficiency via ISA mapping.  An informal discussion of this 

consideration is included in Section 7.3.  

System functionality integration and dynamic upgrading  is another manifestation of capability. 

In conventional processor designs, because of hardware complexity concerns, many desired function-

alities are not integrated for practical reasons.  For example, some of the attractive features include 

dynamic hardware resource management, runtime adaptation of critical system parameters, advanced 

power management and security checks, among many others.   Furthermore, because a hardware bug 

cannot be fixed without calling back delivered products, there must be an exhaustive and expensive 

verification to guarantee 100% correctness for the integrated functionalities.  Moreover, features 

implemented on a chip cannot be easily upgraded.     
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In contrast, the co-designed VM paradigm takes advantage of flexible and relatively cheap 

software to implement certain functionality; software components can be patched and upgraded at a 

much more affordable price.  This practical functionality integration and dynamic update capability 

enables many desirable processor features regarding runtime code transformation and inspection for 

performance, security, reliability etc.   

In this thesis, we implemented the x86 to fusible ISA mapping via co-designed software. The 

fusing algorithms are often beyond complexity-effective hardware design envelope.  More runtime 

optimizations can be added, revised or enhanced later and the upgrade of the VM software is simply a 

firmware download similar to a BIOS update.  Rigorous verification is still needed, but at a much 

lower cost than pure hardware requires.    

Performance  

After solutions become available, performance is usually the next concern. The eventual goal 

for the co-designed VM paradigm is to enable novel computer architectures without legacy concerns.  

Therefore, by its nature, the VM should have superior performance and efficiency at least in steady 

state, which is the dominant runtime phase for most applications. VM startup is affected the most by 

ISA translation overhead and consequently has long been a concern.  This thesis work demonstrates 

that by combining balanced translation strategy, efficient translation software algorithms, and 

primitive hardware assists, VM startup behavior can be improved so that it is very competitive with 

conventional processor designs.  Overall, the VM paradigm promises significant future performance 

potential.     

In this thesis, I proposed an example co-designed x86 virtual machine that features a macro-op 

execution microarchitecture.  One of the purposes of the co-designed x86 processor is to illustrate an 

efficient, high performance VM design.  By fusing dependent instruction pairs, and processing fused 
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macro-ops throughout the entire pipeline, processor resources are better utilized and efficiency is 

improved.  Fused macro-ops reduce instruction management and inter-instruction communication. 

Furthermore, fused macro-ops collapse the dynamic dataflow graph to better extract ILP.   Overall, 

performance is improved via both higher ILP and faster clock speed.  Primitive hardware assists, such 

as dual-mode decoders or translation-assist functional unit(s), ensure that the VM can catch up with 

conventional high performance superscalar designs during the program startup phase.  After the DBT 

translator detects hotspots and fuses macro-ops for the macro-op execution engine, the VM steady 

state IPC performance improves by 18% and 8% over a comparable superscalar design for the 

benchmarked SPEC2000 and Windows workloads, respectively.  Another significant performance 

boost comes from the faster clock speed potential that is enabled by the pipelined instruction sched-

uler and the simplified result forwarding network.  

Complexity  

Modern processors, especially high end designs, have become extremely complex. There are 

several consequent implications due to extreme complexity, i.e. longer time-to-market, higher power 

consumption and lower system reliability among many others.  

The co-designed VM paradigm enables novel efficient system designs and shifts functionality 

to software components when appropriate.  This approach fundamentally reduces overall complexity 

of a computer system.  Less functionality implemented with transistors not only means reduced 

product design complexity, but also implies, if properly engineered, reduced power consumption and 

reduced probability for undetected reliability flaws.   

In this thesis, the example co-designed processor also demonstrates complexity-effectiveness.  

From the pipeline front-end to backend: x86 decoders can be removed if a simplified backend 

functional unit is equipped for translation; the instruction scheduler logic can be pipelined for 
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simplified wakeup and select logic designs; the unique coupling of pipelined two-cycle scheduler 

with 3-1 collapsed ALU(s) removes the need for a complex ALU-to-ALU operand forwarding/bypass 

network.  Additionally, if the design goal is to maintain a comparable performance to conventional 

designs, then the improved pipeline efficiency leads to a reduced pipeline width for better complexity 

effectiveness.  The example VM design requires only minimal revisions to the current mature and 

well-proven superscalar designs.  Therefore, the time-to-market and reliability should be able to 

maintain at least similar to current product levels.   Power consumption should be able to decrease 

further as fused macro-ops can collect more efficiency benefits than Pentium M does from reduced 

instruction traffic through the pipeline.  

In short, the co-designed VM paradigm provides more versatility and flexibility for processor 

designers. This flexibility advantage can be converted to capability, performance and complexity 

effectiveness advantages for future processor designs.  In this thesis research, we demonstrate that the 

key enabling technology, efficient dynamic binary translation, can be achieved via sound engineering.  

Efficient DBT incurs acceptable overhead and enables the translated code to run efficiently. The 

combination of efficient DBT and a co-designed processor enable new efficient microarchitecture 

designs that are beyond the conventional microprocessor technology.   

7.2 Future Research Directions 
This thesis research confirms and provides further support for the co-designed VM paradigm. 

However, due to limited resources, it is not feasible for us to address all the details and explore all the 

possibilities.  The thesis evaluation is also by no means exhaustive.  Therefore, for a complete 

endeavor that explores this paradigm, we enumerate three important directions for future research and 

development efforts: confidence, enhancement and application.   
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Confidence  

For real processor designs, broad range of benchmarks need to be tested and evaluated to 

achieve high confidence for any new system designs proposed.  For example, a general-purpose 

processor design needs to evaluate all typical server, desktop, multimedia and graphics benchmarks. 

Different benchmarks stress different system features and dynamic behaviors.   

This thesis research has conducted experimental studies on two important benchmark suites, 

the SPEC2000 integer and the WinStone2004 Business suites.  Both are primary choices for evaluat-

ing the thesis research: the SPEC2000 applications mainly evaluate CPU pipelines while the 

WinStone2004 Windows benchmarks stress full system runtime behavior and code footprint.  

However, our SPEC2000 runs use test input datasets (except 253.perlbmk) and WinStone2004 runs 

are trace-driven short runs up to 500M x86 instructions.   

For future work, we propose to improve confidence of the thesis conclusions via full bench-

mark runs over a more exhaustive set of benchmarks.  For example, the effect of intensive context 

switches on code cache behavior over long runs is not clear with our evaluation.  Such interactions 

might be important for servers under heavy workloads.  Full benchmark runs with realistic input data 

sets can provide more valuable prediction for real system performance. 

This is a more significant and challenging effort than it appears at a first glance. It requires a 

new experimental methodology that accurately evaluates full benchmark runs.  There are related 

proposals for full benchmark simulations based on statistics, for example, SMARTS [128].  However, 

some workload characteristics and consequently their related system evaluations are based on runtime 

accumulated behavior.  These evaluations involve some complex interactions that are still not clearly 

understood and may not be easily determined by statistical sampling. An example is the interaction 

between context switches and code cache behavior.  
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For the example co-designed x86 processor, there are also other ways to improve confidence of 

the conclusions.   A circuit level model can provide solid evidence to verify the prediction that the 

macro-op execution engine can reduce power consumption and processor complexity.  And it is also 

interesting to investigate how the macro-op execution performs on other major benchmarks such as 

server, embedded, mobile and entertainment workloads.   

Enhancement  

The co-designed VM paradigm itself is a huge design space.  Consequently, we have explored 

only a small fraction of the space.  The space we covered is guided by two heuristics: (1) address the 

critical issues for the paradigm in general, and (2) address the issues in a specific example of co-

designed x86 virtual machine design. A valuable future direction is then to explore more of the design 

space for potential enhancements of the VM paradigm.  

For the VM paradigm in general, there probably exist more synergetic, complexity-effective 

hardware/software co-designed techniques and solutions.   For example, as the diversity of workloads 

increases, adaptive VM runtime strategies and runtime resource management also become more 

important.  Benchmark studies revealed that the hotspot threshold still has room for improvement by 

exploring runtime adaptive settings.  

For the co-designed x86 processor in specific, there are also many possible enhancements to be 

explored. The macro-op execution engine needs two register write ports per microarchitecture lane 

and the characterization data shows that only a small fraction of macro-ops actually need both ports.  

A valuable improvement is to reduce the register write port requirement.  The hotspot optimizer can 

integrate more runtime optimizations that are cost-effective for runtime settings. Some possible 

optimizations include partial redundancy elimination, software x86 stack manager and SIMD-



   154

ification [2] aforementioned.  The fusible ISA might be enhanced by incorporating some new instruc-

tions that are essentially fused operations already in the first place instead of using a hint fusible bit.  

Application  

In this research, we show specifically how the macro-op execution architecture can be enabled 

by the co-designed VM paradigm.  The co-designed x86 processor serves both as a research vehicle 

and a concrete application of the VM paradigm.  

As a general design paradigm, a co-design VM can enable other novel architectures. However, 

the application of the VM paradigm to a specific architecture innovation will require further specific 

engineering effort to develop translation and probably other enabling technologies for a particular 

system design.   

Additionally, many of the findings in the co-designed VM paradigm can be applied to other 

dynamic translation based system.  For example, the primitive hardware assists could be deployed to 

accelerate runtime translation of other types of VMs.   These VMs include system VMs that multiplex 

or partition computer systems at ISA level (e.g. VMware [126]) and process-level VMs that virtualize 

processes at ABI level (for example, various dynamic optimization systems, software porting utilities 

and high level language runtime systems).   
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7.3 Reflections 
This dissertation has formally concluded – All previous thesis discussions are supposed to be 

based on scientific research methodology and solid experimental evidence.  However, it is often 

enlightening to discuss issues informally from alternative perspectives. This additional section shares 

some informal opinions that I feel were helpful during my thesis research endeavor.  However, these 

opinions are reflections -- they are subject to change.  

 An alternative perspective of co-designed virtual machines  

According to the classic computer architecture philosophy, a computer system should use 

hardware to implement primitives and use software to provide eventual solutions.  This insight points 

out the overall direction for complexity-effective system designs for optimal benefit/cost ratio.   

Conventionally, processors are simply presumed to be such primitive-providers.  However, modern 

processor designs are becoming so complex that they are complex systems themselves. Perhaps the 

better way to handle such complexity is to follow the classic wisdom – the processor should have its 

own primitives and solutions for hardware and software division.   

In a sense, a major contribution of this work, simple hardware assists for DBT, is more or less 

a re-evaluation of current circumstances for processor designs according to this classic philosophy. 

Those proposed new instructions and assists are simply new primitives, and the hardware/software 

co-designed VM system is the solution for the entire processor design.  

 The scope of the Architected ISA  

The architected ISA is the standard binary format for commercial software distribution.  As the 

x86 is more or less the de facto format, it might easily lead to a misconception that the architected 

ISA should be some legacy ISA.  As a matter of fact, the architected ISA can be a new standard 

format as exemplified by Java bytecode [88] and Microsoft MSIL [87].  
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In fact, when the first co-designed VM came into being, the IBM AS/400 adopted an abstract 

ISA called MI (machine interface). All AS/400 software is deployed in the MI format.  Dynamic 

binary translation generates the executable native code, which was initially a proprietary CISC ISA 

and later transparently migrated to the RISC PowerPC instruction set.   

The scope of the architected ISA is not constrained to general purpose computing. Graphics 

and multimedia applications actually are distributed in one of the several standard abstract graphics 

binary formats, the architected ISA in the graphics/media world.  Then, it is the graphics card device 

driver that performs the dynamic binary translation from the abstract graphics binary to the real 

graphics and media instructions that the specific graphics processor can execute.   All ATI, nVIDIA 

and Intel graphics processors work in this paradigm.  In a sense, the graphics/media processors (GPU) 

are probably the most widely deployed “co-designed virtual machines”.   

Although the GPU systems organize GPU cores and device driver very similarly, GPU vendors 

do not call their products co-designed virtual machines.  And an interesting perspective is to consider 

the co-designed VM software to be a main processor device driver. However, the following two 

subtle differences (at least) differentiate them apart.  

First, device drivers are managed by OS kernels that run on top of main CPU processors. These 

CPU processors execute the architected ISA of the system.  In contrast, co-designed VM software is 

transparent to all conventional software, including OS kernel and device driver code. The co-designed 

VM is the system that implements and thus under the system architected ISA.   

Second, GPU(s) are add-on devices that perform only the application-specific part of computa-

tion. Between scene switches, GPU drivers translate a small footprint of graphics code, all of which is 

hotspot code deserving optimizations. In contrast, the co-designed main processor conducts all the 

system functionalities. It has much larger code footprint and the code frequency varies dramatically.  
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 The Architected ISA -- is x86 a good choice?  

The short answer is, a subset of the x86 is the best choice for an architected ISA so far.  This is 

not only because more software has been developed for x86 than any other ISA, but also because 

there are important x86 advantages that are often overlooked for binary distribution.  

Although communication bandwidth and storage capacity have been increasing dramatically, 

so have been the number of running software and software functionality, complexity and size.  Hence, 

code density remains a significant factor.  The x86 code density advantage not only comes from its 

variable instruction length, but also comes from its concise instruction semantics, for example, 

addressing modes.   

There are unfortunate features in all ISA designs. This fact is probably unavoidable, especially 

from a long term historical perspective.  Interestingly, the x86 dirty features tend to hurt less runtime 

behavior than those of RISC instruction sets.    

For example, in RISC ISA designs, there are verbose address calculations, delayed branch slots 

and all kinds of encoding artifacts and inefficiency caused by 32-bit fixed length instructions (often 

overlooked for simple decoders).  For all applications, many memory accesses and immediate values 

can be affected inherently by these encoding artifacts, there are few workarounds.   

On the other hand, in the x86, there is a segmented memory model and a stack based x87 float-

ing point that does not maintain precise exceptions.  However, segmented memory is replaced by a 

page-based flat memory model and most x87 code can be replaced by SSE extensions - a better, 

parallel FP/media architecture that maintains precise exceptions. Amazingly, x86 applications often 

have some escape mechanisms to get away from the dirty and obsolete ISA features.   In a sense, the 

x86 instruction set looks like an ISA framework that can accommodate many new features. Old, 

obsolete features can be replaced and eventually forgotten. 
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Perhaps a harder problem for x86 is the extra register spill code that is difficult to remove for 

dynamic binary translators. 100% binary compatibility requires 100% trap compatibility and memory 

access operations are more subtle to remove than it appears for such compatibility.  

For ISA mapping, however, emulating a 16-register (or less) architecture (x86) on a 32-register 

processor is practically much easier and efficient than emulating an architecture with 32-register or 

more [89].  Although a co-designed processor can always have more registers in its implementation 

ISA than the architected ISA, more than 32 registers for an ISA design tends to be overkill and hurts 

code density [74].  

 

 ISA mapping -- the cost of 100% compatibility  

In theory, 100% binary compatibility can be maintained via ISA mapping. In practice, there is 

the problem of mapping efficiency. Here is an informal attempt to argue that such an ISA mapping is 

likely to be efficient for today’s computer industry.   

Intuitively, all computation can be boiled down to a Turing machine that processes a single bit 

at a time, and this simple time step consists of an atomic operation.  At this level, all machines are 

proven to be equivalent for capability.  The co-designed VM is essentially a machine model that has 

more states, but it has shorter critical path for common (hotspot) cases than conventional designs.  

In reality, all processors employ a set of functional units to perform operations atomically at a 

higher level, such as ALU operations, memory accesses and branches. Mapping across different 

architectures at this level can be difficult.  For example, mapping from the Intel x87 80-bit internal 

floating point to 64-bit floating point is both difficult and inefficient. The key point is that the co-

designed VM can employ the same set of basic operations as the architected ISA specification.   For 
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example, in our co-designed processor, the fusible ISA can employ the same basic floating point 

operations as in the x86 specification.  

If all the basic ALU, memory, branch, FP/media and other operations can be matched at the 

functional unit level, then the ISA mapping is essentially cracking instructions into these atomic 

operations, and then combining them in a different way for the new architecture design.  In fact, the 

abstract ISA interface inside our x86vm framework (between the top-level abstract x86vmm and 

Microarchitecture classes) is based on this set of atomic operations.  In a sense, at least for common 

frequent instruction sequences, the ISA mapping is similar to an inexpensive linear transformation 

across different bases within the same linear space.   
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