tello !

CONCURRENCY: INTRODUCTION

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

- Project 3 done?!

- Code review: Sign up!?

- Midterm | details: Piazza

SM"7

AGENDA / LEARNING OUTCOMES

Concurrency
What is the motivation for concurrent execution?

What are some of the challenges?

CONGURRENCY

MOTIVATION FOR CONCURRENCY _ormessmss

Performance (vs. VAX-11/780)

Intel Xeon 4 cores 3.7 GHz (Boost 10 4.1 GHz)

100,000 Intel Xeon 4 cores 3.6 GHz (Boost 10 4.0 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost t0 4.0 GHz)
,(Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
ﬁvte, 0/&/ />'}7e/€/ ‘-A% Itol Xoon 6 cogs, 3.3 GHz (boost 10 36 GHz

Intel Xeon 4 cores, 3.3 GHz (boost 10 3.6 GHZ,
. . InMComﬂEmam4ooma2@-|z(boodlo&SG 2 .

Intel Core Duo Extreme 2 cores, 3.0 GH !
10,000 U ,P(a/a@w\/?, e gl A7 -
y 5 ! PPy et | '

Intel E 32 GHz i
Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Teefwlology)
11 g ORI et — Digital AlphaServer 8400 6/575. 575 Mz . 1207 ..
100 g---==mm==mrmmmemmeme e ce e e e e s e e e e
10 J-====-=====ee=mmcemeaeeaa e)
1 T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002-2004 2006 2008 2010 2012 2014 2016 2018

MOTIVATION

CPU Trend: Same speed, butlmultiple cir:i) —

Goal:Write applications that fully utilizeﬁany cores

w—
Option |: Build apps from many communicating processes Q
— Example: Chrome (process per tab)

4 19]lL (oves

31 0v fy o g b

— Communicate via pipe() or similar 4 frocones V”w 1°°
Pros? —
A . | | eore ’@/”fi)
— Don’t need new abstractions; good for security
Cons!?
— Cumbersome programming LB MVWM/A / W WA

— High communication overheads .
— Expensive context switching (why expensive?) N #Fé 4}

CONGURRENGY: OPTION 2

@ Loh
New abstraction: thread . : Jr
L’\Wf%cjzm ii ‘3
Threads are like processes, except: /(CMMMD‘"‘?
multiple threads of same process share an address space y
Tlverd =
Divide large task across several cooperative threads ¢

Communicate through shared address space

COMMON PROGRAMMING MODELS ~~ ++5

Thoread 1 Teved ©

Multi-threaded programs tend to be structured as: '_,, PY;&{_W} doko
a
Aearth - \ﬁ j,ew.,ove
— Producer/consumer adh

Multiple producer threads create data (or work) that is handled by one of

the multiple consumer threads S N
— Pipeline Ed \’FL i E

Task is divided into series of subtasks, each of which is handled in series by

a different thread

— Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)

ferk editer? L ach goud M

= awfoz pore | M”ﬂ WJ;?

CPU | CPU 2

running running
thread | thread 2

RAM

——

™
ProCess T What state do threads share? Al Sace vord P (L
vepates pole Gle |, gard T
. . /—/
i/%q/(,\%a—w Pom{'e?’ J Hesh | Wfd 3
0 Dy wed L
o 19 2 Ao .
Apvead ID ot 4 F’—/

THREAD VS. PROCESS

Multiple threads within a single process share:
— Process ID (PID)
— Address space: Code (instructions), Most data (heap)
— Open file descriptors — skdouk | pkdlorr

— Current working directory

— User and group id
Each thread has its own
— Thread ID (TID)
— Set of registers, including Program counter and Stack pointer

— Stack for local variables and return addresses
(in same address space)

0S SUPPORT: APPROACH 1 oA
User-level threads: Many-to-one thread mapping (%jd Lb

|
ool
e

— Implemented by user-level runtime libraries

Create, schedule, synchronize threads at user-level xS
— OS is not aware of user-level threads
OS thinks each process contains only a single thread of control
Advantages
— Does not require OS support; Portable
— Lower overhead thread operations since no system call &J
: q Ak
Disadvantages!?
hedidev by T
— Cannot leverage multiprocessors — & v _ 8 L oc k€D

— Entire process blocks when one thread blocks 1 Jo ,ffYﬂpM - Mfe, 7;yumfi&
L >

0S SUPPORT: APPROACH 2 D e

Kernel-level threads: One-to-one thread mapping Aber AL
— OS provides each user—level thread with a kernel thread 13 | proeem L
— Each kernel thread scheduled independently 05 L, bloths

— Thread operations (creation, scheduling, synchronization) performed by OS
Advantages

— Each kernel-level thread can run in parallel on a multiprocessor

— When one thread blocks, other threads from process can be scheduled
Disadvantages

— Higher overhead for thread operations

— OS must scale well with increasing number of threads
D

THREAD SCHEDULE ... e

~folatile>int balance = 0; Cbokl
int loops; — /£}~4“Jf

ain(int argc, char *argv[]) {
loops = atoi(argv[1]);
—>pthread_t pl, p2;

pj_ L] P2 printf("Initial value : %d\n", balance);

NAZV°1d worker(void *arg) { ﬁxu*t4 Pthread]createk&pl, NULL, worker, NULL);

— int i; — —7 Pthread_create(&p2, NULL, worker, NULL);
for (1 = @; i < loops; i++) { ——?Pthread_ﬁoinapl, NULL);

Pthread_join(p2, NULL);
printf("Final value : %d\n", balance);
return 0;

} balance++; __, }ﬁCT;z:jil V@ﬂ(QAQL
ptT[ead exit[(NULL); }
}
-k ¢fL
Jes fmwk » ./threads 100000 //# oacl. rgﬁ: ! qaf’
prow ek Initial value : 0
,;—WUJW": Final value e 200,000

£ oxt

THREAD SCHEDULE #1

balance = balance + 1;
balance at 0x9000 Thread | Thread 2

State:

0x9000:

%eax:
Srip =

L0x195
0x19a
0x19d

yft
ke leo~] ’7
7@; venlx

thread
100 | %eax: %eax:
contro Zerip: Jrip:

blocks:

0x195

—
mov 0x9000, %eax/, vod bolance T ord)

add $0x1, %eax e ~
’ O ﬂre?fwf ¢ Ny
mov %eax, 0x9000 -

e 77@¢zv

w7

ld = # hafarte+t

THREAD SCHEDULE #2

balance = balance + 1;

balance at 0x9cd4 Thread | Thread 2
State: thread %eax:
0x9000: 100 control %rip:
%eax: blocks:

%Srip = 0x195

0x195 mov 0x9000, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9000

o=y TIMELINE VIEW

e ()

Thread | Thread 2
mov 0x123, %eax 10
add %0x|, %eax
mov %eax, 0x 123 11
< — 1\ mov 0x123, %eax

. add %0x2, %eax
1> mov %eax, 0x123

0U|Z 9 https://tinyurl.com/cs537-fa24-q9

Process A with threads TA| and TA2 and process B with a thread TBI.

|.With respect to TAl and TA2 which of the following are true?
— Thyp~r dww D
L Shavdd wede gpets — owm fC
— Nt Aeme ’“%”6“’
2.Which of the following are true with respect to TAl and TBI?
— Pal
—— False

— (rwd_
— (rwel

Thread 1 Thread 2

mov 0x|23, %eax

add %0x |, %eax » QNA
mov 0x |23, %eax

mov %eax, 0x 123

\ v
rife “fﬂ add %0x2, %eax Thread 1 Ih:::c:/ 2
mov UX , /o€aX

Lo~ 12 add %0x2, %eax
2 &~ mov %eax, 0x123

mov %eax, 0x 123

mov 0x 123, %eax
’)
add %0x |, %eax zﬁu’ ateY

Thread 1 Thread 2 UJ mov %eax, 0x 123 W)
,(M mov 0x 123, %eax 7" ~

mov 0x 123, %eax 3
add %0x2, %eax —
add %0x |, %eax

mov %eax, 0x}23
mov %eax, 0x 123 i " A

L—» w7 ite wind

NON-DETERMINISM

Concurrency leads to non-deterministic results

— Different results even with same inputs

—"race conditions
Whether bug manifests depends on CPU schedule!

How to program:imagine scheduler is malicious?!

L—a ama fﬁ«”@ﬂ(/SULM("M'V

WHAT DO WE WANT?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic

od A al o

/f

Ymi?«avq g‘”f —» mov 0x123, %eax ot Iy 3
o1 o™ cﬂmf% add %0x1, %eax |— e -
12 weart Yoprt mov %eax, 0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)

SYNCHRONIZATION

Build higher-level synchronization primitives in_OS

Operations that ensure correct ordering of instructions across threads
Use help from hardware aheY Pyoﬁ,vo.m

Motivation: Build them once and get them right

: low d°
0¢ Monitors Locks Semaphores . ;W"’”M
Condition Variables
ave | Loads Test&Set
Ao d” Stores
Disable Interrupts

LOCKS

TID 4

LOCKS ™
Jock 14 EA{] g

Goal: Provide mutual exclusion (mutex) |
—_— no f

Allocate and Initialize
— Pthread _mutex_t mylock = PTHREAD_ MUTEX INITIALIZER;

Acquire L . ,L\/Zaf U e eccoss prws
— Acquire exclusion access to lock; /LCL
— Wit if lock is not available (some other process in critical section)
— Spin or block (relinquish CPU) while waiting
— Pthread _mutex_lock(&mylock);
Release
— Release exclusive access to lock; let another process enter critical section
— Pthread _mutex_unlock(&mylock);

LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time
— Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily

IMPLEMENTING SYNCHRONIZATION

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores

- Using special hardware instructions

IMPLEMENTING LOCKS: W/ INTERRUPTS

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

void acquire (lockT *1) { void release(lockT *1) {
disableInterrupts () ; enableInterrupts();

} }

Disadvantages!?
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

IMPLEMENTING LOCKS: W/ LOAD+STORE

Code uses a single shared lock variable

// shared variable
boolean lock = false;

void acquire(Boolean *lock) { void release(Boolean *lock) {
while (*lock) /* wait */ ; *lock = false;
*lock = true; }

}

Does this work? What situation can cause this to not work?

RACE CONDITION WITH LOAD AND STORE

*lock == 0 initially

Thread 1 Thread 2

while (*lock == 1)
while (*lock == 1)
*lock =1

*lock =1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

XGHG: ATOMIC EXCHANGE OR TEST-AND-SET

How do we solve this ! Get help from the hardware!

// xchg(int xaddr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr

int xchg(int *addr, int newval) {

int old = xaddr: movl 4(%esp), %edx
xaddr = newval; movl 8(%esp), %eax
return old; xchgl (%edx), %eax

} ret

LOCK IMPLEMENTATION WITH XGHG

typedef struct lock t {
int flag;
} lock t;

void init (lock t *lock) {
lock->flag = ?27?;
}

void acquire(lock t *lock) {
2277,

// spin-wait (do nothing)

void release(lock t *lock) {
lock->flag = ?27?;
}

int xchg(int *addr, int newval)

OTHER ATOMIC HW INSTRUCTIONS

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, ,) ==) ;
// spin-wait (do nothing)

NEXT STEPS

Midterm |: Next week

Next class: More about locks!

