CONCURRENCY: INTRODUCTION

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

- Project 3 done?!

- Code review: Sign up!?

- Midterm | details: Piazza

AGENDA / LEARNING OUTCOMES

Concurrency
What is the motivation for concurrent execution?

What are some of the challenges?

CONGURRENCY

MOTIVATION FOR CONCURRENCY s

Intel Xeon 4 cores 3.7 G
100,000

Intel Xeon 4 cores 3.6 GHz (Booulod.oGHz)
Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)
Intel Xeon 4 cores, 3.3 GHz (boost 1o 3.6 GHz)
Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)

Intel Core Duo Extreme 2 cores, 3.0 GHz 21,87
Intel Core 2 Extreme 2 cores, 29GHz = o _—@—9 - e

-- AMD Athlon 64, 2.8 GHz - - - A== Za.-a222c. €
AMD Athlon 4,387 19,484
Intel Xeon EE 3.2 drzus iz , !

Intel DBSOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology) 6,0
IBM Poweré, 1.3 GHz @=* 4,195
Intel VIC820 motherboard, 1.0 GHz Pentium Ill processor g4~ 016

Professional Workstation XP1000, 667 MHz 21264A 1.779
1111 1 I e Digital AlphaServer 8400 6/575. 575 MHz 21264 .&

AlphaServer 4000 5/600, 600 MHz 21164 im

Digital Alphastation 5/500, 500 MHz is1
Digital Alphastation 4/266, 266 MHz @7, 23%lyear
e, 1BM POWERStation 100, 150 MHz ,.:.’iv.

Digital 3000 AXP/500, 150 MHz @20
HP 9000/750, 66 MHz g .*"

'y
o
1

Performance (vs. VAX-11/780)
8

[51
IBM RS6000/540, 30 MHz 474 52%lyear
MIPS M2000, 25 MHz g5
MIPS M/120, 16.7 MHz @772
10 T Sunaize0, 6T Mz ey T
VAX 8700, 22 MHz g5
AX-11/780, 5 MHz
25%lyear
1 » T 1 1 L Ll T T 1 T Ll T 1

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

MOTIVATION

CPU Trend: Same speed, but multiple cores

Goal:Write applications that fully utilize many cores

Option |:Build apps from many communicating processes
— Example: Chrome (process per tab)
— Communicate via pipe() or similar
Pros!?
— Don’t need new abstractions; good for security
Cons!?
— Cumbersome programming
— High communication overheads
— Expensive context switching (why expensive?)

CONGURRENGY: OPTION 2

New abstraction: thread

Threads are like processes, except:

multiple threads of same process share an address space

Divide large task across several cooperative threads
Communicate through shared address space

COMMON PROGRAMMING MODELS

Multi-threaded programs tend to be structured as:

— Producer/consumer
Multiple producer threads create data (or work) that is handled by one of
the multiple consumer threads

— Pipeline
Task is divided into series of subtasks, each of which is handled in series by
a different thread

— Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)

CPU | CPU 2 RAM

running running
thread | thread 2

——

What state do threads share?

THREAD VS. PROCESS

Multiple threads within a single process share:
— Process ID (PID)
— Address space: Code (instructions), Most data (heap)
— Open file descriptors
— Current working directory
— User and group id
Each thread has its own
— Thread ID (TID)
— Set of registers, including Program counter and Stack pointer

— Stack for local variables and return addresses
(in same address space)

0S SUPPORT: APPROACH 1

User-level threads: Many-to-one thread mapping
— Implemented by user-level runtime libraries
Create, schedule, synchronize threads at user-level
— OS is not aware of user-level threads
OS thinks each process contains only a single thread of control
Advantages
— Does not require OS support; Portable
— Lower overhead thread operations since no system call
Disadvantages!?
— Cannot leverage multiprocessors

— Entire process blocks when one thread blocks

0S SUPPORT: APPROACH 2

Kernel-level threads: One-to-one thread mapping

— OS provides each user-level thread with a kernel thread

— Each kernel thread scheduled independently

— Thread operations (creation, scheduling, synchronization) performed by OS
Advantages

— Each kernel-level thread can run in parallel on a multiprocessor

— When one thread blocks, other threads from process can be scheduled
Disadvantages

— Higher overhead for thread operations

— OS must scale well with increasing number of threads

THREAD SCHEDULE

volatile int balance = 0; int main(int argc, char *argv[]) {
loops = atoi(argv[1]);

int loops;
pthread_t pl, p2;
. . printf("Initial value : %d\n", balance);
void *worker(void *arg) { Pthread create(&pl, NULL, worker, NULL);
int i; Pthread_create(&p2, NULL, worker, NULL);
for (i = @; i < loops; i++) { Pthread_join(pl, NULL);
balance++; Pthread_ngn(pZ, NULL);
printf("Final value : %d\n", balance);
} return 9;
pthread_exit(NULL); }
}

» .[threads 100000
Initial value : 0
Final value :162901

THREAD SCHEDULE #1

balance = balance + 1;

balance at 0x9000 Thread | Thread 2
State: thread %eax:
0x9000: 100 control %rip:
%eax: blocks:

%Srip = 0x195

0x195 mov 0x9000, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9000

THREAD SCHEDULE #2

balance = balance + 1;

balance at 0x9cd4 Thread | Thread 2
State: thread %eax:
0x9000: 100 control %rip:
%eax: blocks:

%Srip = 0x195

0x195 mov 0x9000, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9000

Thread |
mov 0x 123, %eax
add %0x |1, %eax

mov %eax, O0x 123

TIMELINE VIEW

Thread 2

mov 0x 123, %eax
add %0x2, %eax

mov %eax, O0x 123

0U|Z 9 https://tinyurl.com/cs537-fa24-q9

Process A with threads TA| and TA2 and process B with a thread TBI.

|.With respect to TAl and TA2 which of the following are true?

2.Which of the following are true with respect to TAl and TBI?

Thread 1

mov 0x123, %eax
add %0x |, %eax

mov %eax, 0x 123

Thread 2

mov 0x |23, %eax

add %0x2, %eax
mov %eax, 0x 123

Thread 1

mov 0x 123, %eax

add %0x |, %eax

mov %eax, 0x 123

Thread 2

mov 0x 123, %eax

add %0x2, %eax

mov %eax, 0x123

Thread 1 Thread 2
mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x 123

mov 0x123, %eax

add %0x|, %eax

mov %eax, 0x 123

NON-DETERMINISM

Concurrency leads to non-deterministic results
— Different results even with same inputs
— race conditions

Whether bug manifests depends on CPU schedule!

How to program:imagine scheduler is malicious?!

WHAT DO WE WANT?

Want 3 instructions to execute as an uninterruptable group

That is, we want them to be atomic

mov O0x123, %eax
add %0x1, %eax
mov %eax, ©0x123

More general: Need mutual exclusion for critical sections
if thread A is in critical section C, thread B isn’t
(okay if other threads do unrelated work)

SYNCHRONIZATION

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors
Locks Semaphores

Condition Variables

Loads Test&Set

Stores ___
Disable Interrupts

LOCKS

LOCKS

Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
— Pthread _mutex_t mylock = PTHREAD_ MUTEX INITIALIZER;
Acquire
— Acquire exclusion access to lock;
— Wit if lock is not available (some other process in critical section)
— Spin or block (relinquish CPU) while waiting
— Pthread _mutex_lock(&mylock);
Release
— Release exclusive access to lock; let another process enter critical section
— Pthread _mutex_unlock(&mylock);

LOCK IMPLEMENTATION GOALS

Correctness
— Mutual exclusion
Only one thread in critical section at a time
— Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
— Bounded (starvation-free)
Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time

Performance: CPU is not used unnecessarily

IMPLEMENTING SYNCHRONIZATION

Atomic operation: No other instructions can be interleaved

Approaches
- Disable interrupts
- Locks using loads/stores

- Using special hardware instructions

IMPLEMENTING LOCKS: W/ INTERRUPTS

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

void acquire (lockT *1) { void release(lockT *1) {
disableInterrupts () ; enableInterrupts();

} }

Disadvantages!?
Only works on uniprocessors
Process can keep control of CPU for arbitrary length
Cannot perform other necessary work

IMPLEMENTING LOCKS: W/ LOAD+STORE

Code uses a single shared lock variable

// shared variable
boolean lock = false;

void acquire(Boolean *lock) { void release(Boolean *lock) {
while (*lock) /* wait */ ; *lock = false;
*lock = true; }

}

Does this work? What situation can cause this to not work?

RACE CONDITION WITH LOAD AND STORE

*lock == 0 initially

Thread 1 Thread 2

while (*lock == 1)
while (*lock == 1)
*lock =1

*lock =1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

XGHG: ATOMIC EXCHANGE OR TEST-AND-SET

How do we solve this ! Get help from the hardware!

// xchg(int xaddr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr

int xchg(int *addr, int newval) {

int old = xaddr: movl 4(%esp), %edx
xaddr = newval; movl 8(%esp), %eax
return old; xchgl (%edx), %eax

} ret

LOCK IMPLEMENTATION WITH XGHG

typedef struct lock t {
int flag;
} lock t;

void init (lock t *lock) {
lock->flag = ?27?;
}

void acquire(lock t *lock) {
2277,

// spin-wait (do nothing)

void release(lock t *lock) {
lock->flag = ?27?;
}

int xchg(int *addr, int newval)

OTHER ATOMIC HW INSTRUCTIONS

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, ,) ==) ;
// spin-wait (do nothing)

NEXT STEPS

Midterm |: Next week

Next class: More about locks!

