
CONCURRENCY: INTRODUCTION

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

- Project 3 done?!

- Code review: Sign up?

- Midterm 1 details: Piazza

AGENDA / LEARNING OUTCOMES

Concurrency
What is the motivation for concurrent execution?
What are some of the challenges?

CONCURRENCY

Motivation for Concurrency

Motivation
CPU Trend: Same speed, but multiple cores
Goal: Write applications that fully utilize many cores

Option 1: Build apps from many communicating processes
– Example: Chrome (process per tab)
– Communicate via pipe() or similar

Pros?
– Don’t need new abstractions; good for security

Cons?
– Cumbersome programming
– High communication overheads
– Expensive context switching (why expensive?)

CONCURRENCY: Option 2

New abstraction: thread

Threads are like processes, except:

multiple threads of same process share an address space

Divide large task across several cooperative threads
Communicate through shared address space

Common Programming Models

Multi-threaded programs tend to be structured as:

– Producer/consumer
Multiple producer threads create data (or work) that is handled by one of
the multiple consumer threads

– Pipeline
Task is divided into series of subtasks, each of which is handled in series by
a different thread

– Defer work with background thread
One thread performs non-critical work in the background (when CPU idle)

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?

THREAD VS. Process

Multiple threads within a single process share:
– Process ID (PID)
– Address space: Code (instructions), Most data (heap)
– Open file descriptors
– Current working directory
– User and group id

Each thread has its own
– Thread ID (TID)
– Set of registers, including Program counter and Stack pointer
– Stack for local variables and return addresses

(in same address space)

OS Support: Approach 1
User-level threads: Many-to-one thread mapping

– Implemented by user-level runtime libraries
 Create, schedule, synchronize threads at user-level
– OS is not aware of user-level threads
 OS thinks each process contains only a single thread of control

Advantages
– Does not require OS support; Portable
– Lower overhead thread operations since no system call

Disadvantages?
– Cannot leverage multiprocessors
– Entire process blocks when one thread blocks

OS Support: Approach 2
Kernel-level threads: One-to-one thread mapping
– OS provides each user-level thread with a kernel thread
– Each kernel thread scheduled independently
– Thread operations (creation, scheduling, synchronization) performed by OS

Advantages
– Each kernel-level thread can run in parallel on a multiprocessor
– When one thread blocks, other threads from process can be scheduled

Disadvantages
– Higher overhead for thread operations
– OS must scale well with increasing number of threads

THREAD SCHEDULE

volatile int balance = 0;
int loops;

void *worker(void *arg) {
 int i;
 for (i = 0; i < loops; i++) {
 balance++;
 }
 pthread_exit(NULL);
}

int main(int argc, char *argv[]) {
 loops = atoi(argv[1]);
 pthread_t p1, p2;
 printf("Initial value : %d\n", balance);
 Pthread_create(&p1, NULL, worker, NULL);
 Pthread_create(&p2, NULL, worker, NULL);
 Pthread_join(p1, NULL);
 Pthread_join(p2, NULL);
 printf("Final value : %d\n", balance);
 return 0;
}

» ./threads 100000
Initial value : 0
Final value : 162901

Thread Schedule #1

0x195 mov 0x9000, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9000

Thread 1 Thread 2

%eax:
%rip:

State:
0x9000: 100
%eax:
%rip = 0x195

thread
control
blocks:

%eax:
%rip:

balance = balance + 1;
balance at 0x9000

Thread Schedule #2

0x195 mov 0x9000, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9000

Thread 1 Thread 2

%eax:
%rip:

State:
0x9000: 100
%eax:
%rip = 0x195

thread
control
blocks:

%eax:
%rip:

balance = balance + 1;
balance at 0x9cd4

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

 mov 0x123, %eax
 add %0x2, %eax
 mov %eax, 0x123

QUIZ 9 https://tinyurl.com/cs537-fa24-q9

Process A with threads TA1 and TA2 and process B with a thread TB1.

1. With respect to TA1 and TA2 which of the following are true?

2. Which of the following are true with respect to TA1 and TB1?

Non-Determinism

Concurrency leads to non-deterministic results
– Different results even with same inputs
– race conditions

Whether bug manifests depends on CPU schedule!

How to program: imagine scheduler is malicious?!

What do we want?

Want 3 instructions to execute as an uninterruptable group
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

More general: Need mutual exclusion for critical sections
 if thread A is in critical section C, thread B isn’t
 (okay if other threads do unrelated work)

Synchronization

Build higher-level synchronization primitives in OS
Operations that ensure correct ordering of instructions across threads
Use help from hardware

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads
Stores

Test&Set
Disable Interrupts

LOCKS

Locks
Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
– Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
– Acquire exclusion access to lock;
– Wait if lock is not available (some other process in critical section)
– Spin or block (relinquish CPU) while waiting
– Pthread_mutex_lock(&mylock);

Release
– Release exclusive access to lock; let another process enter critical section
– Pthread_mutex_unlock(&mylock);

Lock Implementation Goals

Correctness
– Mutual exclusion
 Only one thread in critical section at a time
– Progress (deadlock-free)
 If several simultaneous requests, must allow one to proceed
– Bounded (starvation-free)
 Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily

Implementing Synchronization

Atomic operation: No other instructions can be interleaved

Approaches
 - Disable interrupts
 - Locks using loads/stores
 - Using special hardware instructions

Implementing Locks: W/ Interrupts

Turn off interrupts for critical sections
- Prevent dispatcher from running another thread
- Code between interrupts executes atomically

Disadvantages?
 Only works on uniprocessors
 Process can keep control of CPU for arbitrary length
 Cannot perform other necessary work

void acquire(lockT *l) {
 disableInterrupts();
}

void release(lockT *l) {
 enableInterrupts();
}

Implementing LOCKS: w/ Load+Store

Code uses a single shared lock variable

void release(Boolean *lock) {
 *lock = false;
}

// shared variable
boolean lock = false;
void acquire(Boolean *lock) {
 while (*lock) /* wait */ ;
 *lock = true;
}

Does this work? What situation can cause this to not work?

Race Condition with LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2

while(*lock == 1)

 while(*lock == 1)
 *lock = 1

*lock = 1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

xchg: atomic exchange or test-and-set

// xchg(int *addr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr
int xchg(int *addr, int newval) {
 int old = *addr;
 *addr = newval;
 return old;
}

How do we solve this ? Get help from the hardware!

movl 4(%esp), %edx
movl 8(%esp), %eax
xchgl (%edx), %eax
ret

LOCK Implementation with XCHG

typedef struct __lock_t {
 int flag;
} lock_t;

void init(lock_t *lock) {
 lock->flag = ??;
}

void acquire(lock_t *lock) {
 ????;
 // spin-wait (do nothing)
}

void release(lock_t *lock) {
 lock->flag = ??;
}

int xchg(int *addr, int newval)

Other Atomic HW Instructions

int CompareAndSwap(int *addr, int expected, int new) {
 int actual = *addr;
 if (actual == expected)
 *addr = new;
 return actual;
}

void acquire(lock_t *lock) {
 while(CompareAndSwap(&lock->flag, ,) ==) ;
 // spin-wait (do nothing)
}

NEXT STEPS

Midterm 1: Next week

Next class: More about locks!

