Wokgoe otk !

ADVANCED TOPIGS: MULTI GPU SCHEDULING

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 6 — last project! Hos
- Deadline end of mext week (Fyi”(“‘}>

Midterm 3
- December 19t [0:05am

- Details on Piazza soon

_/? o’
— SWQAM; M Q)(M &{E

AGENDA / LEARNING OUTCOMES

How to perform CPU scheduling on multiple processors!?
L

VMMRECAP " 2 | o

, =
Mero"} & Yavdware

Virtual machine: Complete compute environment, isolated “HVT-X

Virtual machine monitor / Hypervisor: control resources (direct or part of OS)

Trap-and-emulate to handle system calls

Software TLB handler: maintain Physical = Machine page tables

‘/— '
_, ,\f{ a mw?g
Paravirtualization - modify guest OS for efficiency

Intel VT-X extensions — new hardware primitives to support virtualization

PREVIOUSLY ON SCHEDULING

ok proless

Ve'(» ACE M - f Sd\ii:ﬁiw),
ABCABCABCABCABC CPU soleckel
U I I I Cache | 7%

ime

Lt MCe

Ly e g pe et Memory

Y Wh

MULTIPROCESSORS """
O o

2 A e’
Two key goals] C v ‘

B A \ Po, P4 P2, P24
CPU CPU
Cache Affinity _ ¢ach
Ly ip o process mas o Cache ache)—
e , : fas 2O
a CpV, nrext i i Bus /LQ@J
~ CpyV .
Load Balancing v iF o pome U M Lk
—_— emory
Lq yt"* R o /(;YOCQM&

CPs

SINGLE QUEUE SCHEDULING ., ..,

dov § CUs in ohew

Maintain a single queue of all runnable jobs
l__v P.(of_w f('o rvn o

Queue— A — B — C — D — E —nuLL e
~C.pV
P o
Scalat)llltlz chaIIenie .) 4 U
ocking overhead! 7 N\

firer
L o €] 1 [e (5 ot
G ‘
Il
o .
R CPVs, kot iran

N«'oﬁ £~
CPUO C
CPU 1 A N C
cruz (o] | A JEIED

CPU 3 ﬂj

o

CACHE AFFINITY
©-®-¢

... (repeat) ...

... (repeat) ...

N~ U QHQ
Mv&
When
kg ,Ajffm
Associate affinlty with each job
oo iob

Move jobs to ensure fairness /
load balance

A,G,A1F1A’
B B ﬁ 7%1 6/‘E/BE—_§
c & &

D D R

MULTI QUEUE SCHEDULING

2 CPUs f
'>> ¢ TS@L); av
u
W Q—> A — C Q—> B — D Ml,zvv\ /
one GUOE
Maintain a queue per CPU
Within each queue, use existing scheduling algorithms
Y T R /o

Scalability? No el ,’Lr otk =

.4
Fvo mes qun e~ Khe peme v AXU\
ocYL»

Cache affinity?

MULTI QUEUE CHALLENGES —> CFS

How to place new jobs in queues?

Load balancing

Q0 — Ql— B — D

N
CPUO boade hdonciry

o | | R | BN | N

LINUX: COMPLETELY FAIR SCHEDULER (CFS) "
pwoz«w&
Goal: Divide a CPU using the concept of virtual runtime (Vl‘unt|me) ~)]mz/’:tm

Similar approach to stride scheduler (remember P4!?)

Approach: Pick the process which has the lowest vruntime

When to switch processes: e
e sched latency — how long before switch (“fairness window”)— 3.;;
3

[1" BN |

q?"‘b LA a C}fv(,

b §me

min_granularity —s 0

PRIORITY IN CFS L

Niceness: Parameter can be set anywhere from -20 to +19 O — defoulk

Positive nice values lower priority, negative values higher priority

nice(1) - Linux man page Acvo 4
— /,JAUL"IQV
Name
nice - run a program with modified scheduling priority rw 2
Map niceness value to weight A - 1o
,_—/
Higher priority gets larger time slice . O

vruntime increment is scaled inversely to weight

e 0

VT pndiml %ﬂwﬂ Mowey 5L i ws

COURSE FEEDBACK SURVEY, QUIZ

https://heliocampusac.wisc.edu/

QUIZ 21 o L

What is the difference between a Type | and Type 2 Hypervisor?
L) T%{ 1 - J&*u/ua bove weha Xen ‘
Toabe 1 - Yot ap et of Hot O S Linex
Which of the foIIowmg is not part of the Processor Status Word? — 5\0'0“)4* P’/"‘k

l‘—9 C\&«P,Yd_ FIL'Y{pUSC, Q&?«, ’VQ’/Y

True or False: Executing a system call in aVM is no more expensive than a normal
system call.

K VM

Falie - T«Np 4 emlate > OM&,&M ,(fe/?'i

When a virtual machine experiences a page fault, which of the following is NOT true?

VN S TN ey ithenk VMM B b

CFS: HANDLING THREAD JOINS

New thread or thread wakes up from sleep

— lowa o) Tl

How to set vruntime?

New thread: vruntime equal to the maximum vruntime of runnable threads

L) \ laadv- 01, the W@

ft

|/O wakeup: Set to minimum of all runnable jobs right now

\——> "_[Y,,W(r ,}MW\, 10““’“‘”-%70
fﬂg‘«f vy

CFS ON MULTI PROCESSORS
Load Balancing: Goal is to balance out(or load) across all cores

Example: | CPU-intensive thread vs.|0 threads that mostly sleep

‘work
Load of a thread: average CPU utilization of a thread

Effective goal: Balance sum of load across cores @ l

-
-

STy

CFS: THREAD CREATION ——

COCR c"d«'
wk cQv o0 cvv 1
Decide which cores are suitable to host the thread w’“‘

/{mol }ﬂla”‘a"j aCrors

(ov® 4n fe ‘S\%em

Approach: heuristics to decide suitable cores.
Pick core among those with lowest load _

E—to-many producer—consumer' Spread out consumers across cores

|-to-1 communication: Restricts to cores sharing a cache /'Yl-,\

thrtad PV2 "
‘ﬁA'YQoJQ 4 ,|¢¥U~0((o Wame ¥ PQ‘YUA}(: O
l"YoAMUU .\\ %VM :

Y frvend

CFS: LOAD BALANCING

Periodically (e.g., 4ms) steal work from other cores

When stealing work, even out the load between the two cores

®~b Q’L

(11 Z 11]
Yk " wovk

CFS: LOAD BALANCING

Topology awareness while work stealing

Try to steal work more frequently from cores that are “close”

vs. cores that are “remote” (e.g., on a remote NUMA node)

mﬁkwl

N Lo offen

Load difference is small (less than 25% in practice), no load balancing

10 A

o ®

30 4

0
1
2
3
4
5
6
7
8
9 4
10
11
12
13
14

T T T
0 3 6 9 12 15 - 18

Figure 6: Number of threads per core over time on (a) ULE and (b) CFS. Each line represents a core (32 in total), time
passes on the x-axis (in seconds), and colors represent the numbers of threads on the core. Thread counts below 15 are
represented in shades of grey. Threads are pinned on core O for the first 14.5 seconds of the execution.

Start 512 spinning threads on core 0. Let load balancer work

T T T
0 3 6 9 12 15 18

Ll ~- - Ll Ll - - ~- Ll Ll o™~ ™ o™ (] ™~ (]

D O o4 N M T N W N~
N N MM m M M M mMm M ™M

1
2
3
4
25
6
7
8

o.—cmmvmol\wmo:Nmﬁm\or\wmc

Figure 7: Number of threads per core over time on c-ray on (a) ULE and (b) CFS.
start pinned on core 0.

o~

Create 512 threads.

Threads are not pinned at creation time
scheduler chooses a core for each thread

All threads wait on a barrier before computation

ULE (BSD SCHEDULER)

Aims to even out the number of threads per core (not load)
Choosing a core for a newly created thread: affinity heuristic
Periodic load balancing only by core 0.

a thread from the most loaded core, the (donor)

to the less loaded core, the (receiver)

Next class: Distributed Systems

Last week!

