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ADVANCED TOPIGS: MULTI GPU SCHEDULING
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ADMINISTRIVIA

Project 6 — last project! Hos
- Deadline end of mext week (Fyi”(“‘}>

Midterm 3
- December 19t [0:05am

- Details on Piazza soon
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AGENDA / LEARNING OUTCOMES

How to perform CPU scheduling on multiple processors!?
L




VMMRECAP " 2 | o

, =
Mero"} & Yavdware

Virtual machine: Complete compute environment, isolated “HVT-X

Virtual machine monitor / Hypervisor: control resources (direct or part of OS)

Trap-and-emulate to handle system calls

Software TLB handler: maintain Physical = Machine page tables
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Paravirtualization - modify guest OS for efficiency

Intel VT-X extensions — new hardware primitives to support virtualization



PREVIOUSLY ON SCHEDULING
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MULTIPROCESSORS """
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SINGLE QUEUE SCHEDULING ., ..,
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Maintain a single queue of all runnable jobs
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CACHE AFFINITY
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... (repeat) ...

... (repeat) ...
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Associate affinlty with each job
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Move jobs to ensure fairness /
load balance
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MULTI QUEUE SCHEDULING
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Maintain a queue per CPU
Within each queue, use existing scheduling algorithms
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Cache affinity?



MULTI QUEUE CHALLENGES —> CFS

How to place new jobs in queues?

Load balancing
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LINUX: COMPLETELY FAIR SCHEDULER (CFS) "
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Goal: Divide a CPU using the concept of virtual runtime (Vl‘unt|me) ~ )]mz/’:tm

Similar approach to stride scheduler (remember P4!?)

Approach: Pick the process which has the lowest vruntime

When to switch processes: e
e sched latency — how long before switch (“fairness window”)— 3.;;
3

[ 1" BN |

q?"‘b LA a C}fv(,

b §me

min_granularity —s 0



PRIORITY IN CFS L

Niceness: Parameter can be set anywhere from -20 to +19 O — defoulk

Positive nice values lower priority, negative values higher priority

nice(1) - Linux man page Acvo 4
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Name
nice - run a program with modified scheduling priority rw 2
Map niceness value to weight A - 1o
,_—/
Higher priority gets larger time slice . O

vruntime increment is scaled inversely to weight
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COURSE FEEDBACK SURVEY, QUIZ

https://heliocampusac.wisc.edu/




QUIZ 21 o L

What is the difference between a Type | and Type 2 Hypervisor?
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Which of the foIIowmg is not part of the Processor Status Word? — 5\0'0“)4* P’/"‘k
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True or False: Executing a system call in aVM is no more expensive than a normal
system call.
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When a virtual machine experiences a page fault, which of the following is NOT true?
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CFS: HANDLING THREAD JOINS

New thread or thread wakes up from sleep
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How to set vruntime?

New thread: vruntime equal to the maximum vruntime of runnable threads
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|/O wakeup: Set to minimum of all runnable jobs right now
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CFS ON MULTI PROCESSORS
Load Balancing: Goal is to balance out(or load) across all cores

Example: | CPU-intensive thread vs.|0 threads that mostly sleep

‘work
Load of a thread: average CPU utilization of a thread

Effective goal: Balance sum of load across cores @ l
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CFS: THREAD CREATION ——

COCR c"d«'
wk cQv o0 cvv 1
Decide which cores are suitable to host the thread w’“‘
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Approach: heuristics to decide suitable cores.
Pick core among those with lowest load _

E—to-many producer—consumer' Spread out consumers across cores

|-to-1 communication: Restricts to cores sharing a cache /'Yl-,\
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CFS: LOAD BALANCING

Periodically (e.g., 4ms) steal work from other cores

When stealing work, even out the load between the two cores
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CFS: LOAD BALANCING

Topology awareness while work stealing

Try to steal work more frequently from cores that are “close”

vs. cores that are “remote” (e.g., on a remote NUMA node)
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Load difference is small (less than 25% in practice), no load balancing
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Figure 6: Number of threads per core over time on (a) ULE and (b) CFS. Each line represents a core (32 in total), time
passes on the x-axis (in seconds), and colors represent the numbers of threads on the core. Thread counts below 15 are
represented in shades of grey. Threads are pinned on core O for the first 14.5 seconds of the execution.

Start 512 spinning threads on core 0. Let load balancer work
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Figure 7: Number of threads per core over time on c-ray on (a) ULE and (b) CFS.
start pinned on core 0.
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Create 512 threads.

Threads are not pinned at creation time
scheduler chooses a core for each thread

All threads wait on a barrier before computation



ULE (BSD SCHEDULER)

Aims to even out the number of threads per core (not load)
Choosing a core for a newly created thread: affinity heuristic
Periodic load balancing only by core 0.

a thread from the most loaded core, the (donor)

to the less loaded core, the (receiver)



Next class: Distributed Systems

Last week!



