
ADVANCED TOPICS: MULTI CPU SCHEDULING

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 6 – last project!
- Deadline end of next week

Midterm 3
- December 19th, 10:05am
- Details on Piazza soon

AGENDA / LEARNING OUTCOMES

How to perform CPU scheduling on multiple processors?

VMM RECAP

Virtual machine: Complete compute environment, isolated
Virtual machine monitor / Hypervisor: control resources (direct or part of OS)

Trap-and-emulate to handle system calls
Software TLB handler: maintain Physical à Machine page tables

Paravirtualization - modify guest OS for efficiency
IntelVT-X extensions – new hardware primitives to support virtualization

Previously on SCHEDULING

0 5 10 15 20 25 30
Time

ABCABCABCABCABC

MULTI PROCESSORS

Two key goals

Cache Affinity

Load Balancing

SINGLE QUEUE SCHEDULING

Maintain a single queue of all runnable jobs

Scalability challenge
 Locking overhead?

CACHE AFFINITY

Associate affinity with each job

Move jobs to ensure fairness /
load balance

MULTI QUEUE SCHEDULING

Maintain a queue per CPU
Within each queue, use existing scheduling algorithms

Scalability?

Cache affinity?

MULTI QUEUE challenges à CFS

How to place new jobs in queues?

Load balancing

LINUX: COMPLETELY FAIR SCHEDULER (CFS)
Similar approach to stride scheduler (remember P4!?)
Goal: Divide a CPU using the concept of virtual runtime (vruntime)
Approach: Pick the process which has the lowest vruntime

When to switch processes:
 sched_latency – how long before switch (“fairness window”)

 min_granularity

PRIORITY in CFS
Niceness: Parameter can be set anywhere from -20 to +19
Positive nice values lower priority, negative values higher priority

Map niceness value to weight
 Higher priority gets larger time slice
 vruntime increment is scaled inversely to weight

COURSE FEEDBACK SURVEY, QUIZ

https://heliocampusac.wisc.edu/

QUIZ 21

What is the difference between a Type 1 and Type 2 Hypervisor?

Which of the following is not part of the Processor Status Word?

True or False: Executing a system call in a VM is no more expensive than a normal
system call.

When a virtual machine experiences a page fault, which of the following is NOT true?

CFS: handling thread joins

New thread or thread wakes up from sleep
How to set vruntime?

New thread: vruntime equal to the maximum vruntime of runnable threads

I/O wakeup: Set to minimum of all runnable jobs right now

CFS on multi processors

Load Balancing: Goal is to balance out work (or load) across all cores

Example: 1 CPU-intensive thread vs.10 threads that mostly sleep

Load of a thread: average CPU utilization of a thread

Effective goal: Balance sum of load across cores

CFS: THREAD CREATION

Decide which cores are suitable to host the thread

Approach: heuristics to decide suitable cores.
Pick core among those with lowest load

1-to-many producer-consumer: Spread out consumers across cores
1-to-1 communication: Restricts to cores sharing a cache

CFS: LOAD BALANCING

Periodically (e.g., 4ms) steal work from other cores

When stealing work, even out the load between the two cores

CFS: LOAD BALANCING

Topology awareness while work stealing

 Try to steal work more frequently from cores that are “close”
 vs. cores that are “remote” (e.g., on a remote NUMA node)

Load difference is small (less than 25% in practice), no load balancing

Start 512 spinning threads on core 0. Let load balancer work

Create 512 threads.
Threads are not pinned at creation time
scheduler chooses a core for each thread
All threads wait on a barrier before computation

ULE (BSD SCHEDULER)

Aims to even out the number of threads per core (not load)

Choosing a core for a newly created thread: affinity heuristic

Periodic load balancing only by core 0.
 a thread from the most loaded core, the (donor)
 to the less loaded core, the (receiver)

Next class: Distributed Systems

Last week!

