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Project 5 grades — Praz1a
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AGENDA / LEARNING OUTCOMES

What are some basic building blocks for systems that span across machines?
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Maintain a queue per CPU v
Within each queue, use existing scheduling algorithms

Scalability — Good! —

Cache affinity — Good! v

Load balange — How?
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

Similar approach to stride scheduler (remember P4!?)

Goal: Divide a CPU using the concept of virtual runtime (vruntime)

Approach: Pick the process which has the lowest vruntime

When to switch processes:
sched latency — how long before switch (“fairness window”)
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CFS: LOAD BALANCING &4 2,
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Periodically (e.g., 4ms) steal work from other cores

dar~te
When stealing work, even out the load between the two cores b
Topology awareness while work stealing / \
Try to steal work more frequently from cores that are “close” § 6
vs. cores that are “remote” (e.g., on a remote NUMA node) D

Load difference is small (less than 25% in practice), no load balancing
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Figure 6: Number of threads per core over time on (a) ULE and (b) CFS. Each line represents a core (32 in total), time
passes on the x-axis (in seconds), and colors represent the numbers of threads on the core. Thread counts below 15 are
represented in shades of grey. Threads are pinned on core O for the first 14.5 seconds of the execution.
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ULE (BSD SCHEDULER)
/9 MLE & aMyv’oa\(‘/L

Three queues per core: interactive, batch and idle threads

Calculate interactivity based on last 5 seconds

Inside a queue, sort threads by priority (niceness level)

First search interactive queue, then batch queue.
/



ULE (BSD SCHEDULER) +.....c 4+
JoJoory

Aims to even out the number of threads per core (not load)
\o CFS

Choosing a core for a newly created thread: affinity heuristic (topology)

Periodic load balancing only by core 0. @
a thread from the most loaded core, the (donor) \C?VDK @
N

to the less loaded core, the (receiver) /Sm‘k p
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DISTRIBUTED SYSTEMS



WHAT IS A DISTRIBUTED SYSTEM?

A distributed system is one where a machine I've never heard of can cause my program to fail.
— Leslie Lamport — “Jurra Y arvatd

Definition: More than one machine working together to solve a problem B_—_J
ervey
/

Examples: v
) ) b€
— client/server: web server and web client ’ EL;’W\

— cluster: page rank computation W
o www




WHY GO DISTRIBUTED?
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WHY GO DISTRIBUTED?

More computing power
More storage capacity
Fault tolerance

Data sharing



NEWCHALLENGES .

System failure: need to worry about partial failure /

Communication failure: links unreliable cpV M

- bit errors ULWL’ S g
- packet loss ———=  pwepe from O /_\ 0s |

- node/link failure & et ,____ﬁ
j/ kﬂ\r(‘r q/

[V\ MY) CpY ‘D/M/L cpv DNV’\
Aok

s
v

T =
=

. &
X



COMMUNICATION OVERVIEW

Reliable messages: TCP

: [ 4o
Raw messa ges: UDP ] NJ""M’”‘J 4

Remote procedure call: RPC



RAW MESSAGES: UDP

v a £ o
UDP : User Datagram Protocol Abate

API: (orstogous o £ e )

- reads and writes over socket file descriptors

- messages sent from/to ports to target a process on machine

Provide minimal reliability features: /»P,Hk;cu( AFOJ"‘Y”

- messages may be lost

- messages may be reordered
- messages may be duplicated Che ™™

- only protection: checksums to ensure data not corrupted / | -‘(%/(6
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RAW MESSAGES: UDP

Advantages Dy S0 cd ok M(} b\,@/l\e,m(
— Lightweight

— Some applications make better reliability decisions themselves (e.g., video

conferencing programs)
V]ﬂl&o azwl \/;ﬂl‘”

Disadvantages WJW?
— More difficult to write applications correctly




Course feedback:
https://heliocampusac.wisc.edu
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|.Why is cache affinity important?
—  eger® o g 3

2. Order the following processes by priority, from highest to lowest.
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3.What is an advantage of single queue (SQMS) scheduling?

L pirgled flat” MEMS

4.What is an advantage of multiple queue (MQMS) scheduling?
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RELIABLE MESSAGES: LAYERING STRATEGY

TCP: Transmission Control Protocol

Using software to build

reliable logical connections over unreliable physical connections
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TECHNIQUE #1: ACK

Sender Receiver
[send message] _ N
/> —  [recv message]
(/(/Jo/\/f — [send ack]

ot [recv ack]

Aayl/ln/ | A:,]L A ‘ ”
ot 25 perdky A
Ack: Sender knows message was received
What to do about message loss!?
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TECHNIQUE #2: TIMEQUT

Sender Receiver
[send message] — X
[start timer]

... waiting for ack ...

[timer goes off]
[send message] —

— [recv message]
— [send ack]

[recv ack] -~



TIMEQUT

AQ.\(V@_’(
How long to wait? ch \\?E@
Mo w
Too long? Cv —
— System feels unresponsive /7
C5

Too short!?

— Messages needlessly re-sent

— | Messages may have been dropped due to overloaded server. Resending makes
overload worse!



LOST ACK PROBLEM

Sender
[send message] —

Receiver

[timeout]
[send message] —

e

"~ [recv message]
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—[send ack]

~ [ignore message]
— [send ack]

[recv ack] N



SEQUENCE NUMBERS o
o

Sequence numbers quz 1,;7
- senders gives each message an increasing unique seq number

- receiver knows it has seen all messages before N
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Suppose message K is received. XM wov 1
> A .
- if K <= N, Msg K is already delivered, ignore it M /ng”’@—
- if K= N + [, first time seeing this message A“"’a > veer >
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TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order

Timeouts are adaptive



COMMUNICATIONS OVERVIEW

Raw messages: UDP MM(

AL

R AAY
Reliable messages: TCP

Remote procedure call: RPC
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Remote Procedure Call EE— }MZL:}?% L ofi‘é’“ Tc? or UDP
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What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function! f SovveY
r\f\-
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chit RPC S

Machine A Machine B 20
int main(...) { int foo(char *msg) {

int x = foo("hello”);

w"’“)f be” B _
(PN_UK/”*‘/’ int foo(char *msg) {

send msg to B
recv msg from B

Sanl (L’//« /;MU“"”

6id foo_listener() {




RPC

,(U“‘/Q Machine A oindirs ' Machine B
: : ol~rALY: :
|0 . o~ int main(...) { int foo(char *msg) {

-

XA’J\ int x = foo("hello”); \(/
} NV s }
(. ) 4 )
client int foo(char *msg) { )f)si/d‘i = ! void foo_listener() { server
wrapper send msg to B . I wh||e(I) { wrapper
recv msg from B pend recy, call foo
) N vy }
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RPCTOOLS o bugiee

RPC packages help with two components

(1) Runtime library /
— Thread pool A’vao e,

— Socket listeners call functions on server

(2) Stub generation s ’FDO ( M’W‘j)

— Create wrappers automatically

— Many tools available (rpcgen, thrift, protobufs) l
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WRAPPER GENERATION

Wrappers must do conversions:

- client arguments to message

- message to server arguments

- convert server return value to message

- convert message to client return value

Need uniform endianness (wrappers do this)

Conversion is called marshaling/unmarshaling, or serializing/deserializing



WRAPPER GENERATION: POINTERS

Why are pointers problematic?
Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data



RPG OVER TCP?

Sender Receiver
[call]
[tcp send]—
— [recv]
__________________ [ack]
DA [exec call]
[return]

—[tcp send]




RPG OVER UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender Receiver
[call]
[udp send
]\>[recv]
[exec call]
[return]

/tcp send]

[recv]



NEXT STEPS

Review for Midterm 3

Last lecture!



