Hello!

DISTRIBUTED SYSTEMS

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 5 grades — Praz1a

Project 6 deadline — Fviola‘)

HelioCampus feedback ~ 1S

AGENDA / LEARNING OUTCOMES

What are some basic building blocks for systems that span across machines?

RECAP

Sieote G- MULTI QUEUE SCHEDULING
[“/nd(, pick o udock

@ né sk

Q—> A — C Q1 —> B — D

19
Maintain a queue per CPU v
Within each queue, use existing scheduling algorithms

Scalability — Good! —

Cache affinity — Good! v

Load balange — How?

-

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

Similar approach to stride scheduler (remember P4!?)

Goal: Divide a CPU using the concept of virtual runtime (vruntime)

Approach: Pick the process which has the lowest vruntime

When to switch processes:
sched latency — how long before switch (“fairness window”)

min_granularity . e

Po.\ P PL\ P3

f\o \ ! : Nj"d) L’\fe"ba

S S
#ﬁ//‘: 0;(,{, %

. >

ol

CFS: LOAD BALANCING &4 2,

Pu@:pu
>

Periodically (e.g., 4ms) steal work from other cores

dar~te
When stealing work, even out the load between the two cores b
Topology awareness while work stealing / \
Try to steal work more frequently from cores that are “close” § 6
vs. cores that are “remote” (e.g., on a remote NUMA node) D

Load difference is small (less than 25% in practice), no load balancing

20 1 (b) 1 e

30 A

m

0

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19

o ~ o~ m < n o ~ © = o - o
~ ~ ~ ~ ~N ~N ~N o~ ~ ~N m m ™

S B

T T T
0 3 6 9 12 15 ‘b 18

Figure 6: Number of threads per core over time on (a) ULE and (b) CFS. Each line represents a core (32 in total), time
passes on the x-axis (in seconds), and colors represent the numbers of threads on the core. Thread counts below 15 are
represented in shades of grey. Threads are pinned on core O for the first 14.5 seconds of the execution.

Start 512 spinning threads on core 0. Let load balancer work S\Z
ke Jovmons B mwore A0 |2
Ungin T 05 (e M 2208

— Nk #’“Fwt//a Lol Alanod proe

ULE (BSD SCHEDULER)
/9 MLE & aMyv’oa\(‘/L

Three queues per core: interactive, batch and idle threads

Calculate interactivity based on last 5 seconds

Inside a queue, sort threads by priority (niceness level)

First search interactive queue, then batch queue.
/

ULE (BSD SCHEDULER) +.....c 4+
JoJoory

Aims to even out the number of threads per core (not load)
\o CFS

Choosing a core for a newly created thread: affinity heuristic (topology)

Periodic load balancing only by core 0. @
a thread from the most loaded core, the (donor) \C?VDK @
N

to the less loaded core, the (receiver) /Sm‘k p
woY

M,“/p’q/e} QMYD@CA ,Fm"‘

DISTRIBUTED SYSTEMS

WHAT IS A DISTRIBUTED SYSTEM?

A distributed system is one where a machine I've never heard of can cause my program to fail.
— Leslie Lamport — “Jurra Y arvatd

Definition: More than one machine working together to solve a problem B_—_J
ervey
/

Examples: v
)) b€
— client/server: web server and web client ’ EL;’W\

— cluster: page rank computation W
o www

WHY GO DISTRIBUTED?

— Wﬂ“")t o 950& - ~ rv\ﬂc//v:-"‘Q
ek ® et

IR (Y N B fak otk

l 52.7(“’**7&“[”

/;)YOCW’/ /f"wé/ ~
— Scake rp -

N m—n&% e 8"

WHY GO DISTRIBUTED?

More computing power
More storage capacity
Fault tolerance

Data sharing

NEWCHALLENGES .

System failure: need to worry about partial failure /

Communication failure: links unreliable cpV M

- bit errors ULWL’ S g
- packet loss ———= pwepe from O /_\ 0s |

- node/link failure & et ,____ﬁ
j/ kﬂ\r(‘r q/

[V\ MY) CpY ‘D/M/L cpv DNV’\
Aok

s
v

T =
=

. &
X

COMMUNICATION OVERVIEW

Reliable messages: TCP

: [4o
Raw messa ges: UDP] NJ""M’”‘J 4

Remote procedure call: RPC

RAW MESSAGES: UDP

v a £ o
UDP : User Datagram Protocol Abate

API: (orstogous o £ e)

- reads and writes over socket file descriptors

- messages sent from/to ports to target a process on machine

Provide minimal reliability features: /»P,Hk;cu(AFOJ"‘Y”

- messages may be lost

- messages may be reordered
- messages may be duplicated Che ™™

- only protection: checksums to ensure data not corrupted / | -‘(%/(6

jomaUA‘ r\”(] 'H/;,ge hytes? 4

RAW MESSAGES: UDP

Advantages Dy S0 cd ok M(} b\,@/l\e,m(
— Lightweight

— Some applications make better reliability decisions themselves (e.g., video

conferencing programs)
V]ﬂl&o azwl \/;ﬂl‘”

Disadvantages WJW?
— More difficult to write applications correctly

Course feedback:
https://heliocampusac.wisc.edu

QUIZ 22

|.Why is cache affinity important?
— eger® o g 3

2. Order the following processes by priority, from highest to lowest.

. : L
L N
C ~ -7 IPWM
'D=+l‘1

3.What is an advantage of single queue (SQMS) scheduling?

L pirgled flat” MEMS

4.What is an advantage of multiple queue (MQMS) scheduling?

Ly yody bty s owe ald were feEE-

RELIABLE MESSAGES: LAYERING STRATEGY

TCP: Transmission Control Protocol

Using software to build

reliable logical connections over unreliable physical connections
A 'f(ij».ﬂ'wé
i)

_// whvd/ia/;@
NN 2

TECHNIQUE #1: ACK

Sender Receiver
[send message] _ N
/> — [recv message]
(/(/Jo/\/f — [send ack]

ot [recv ack]

Aayl/ln/ | A:,]L A ‘ ”
ot 25 perdky A
Ack: Sender knows message was received
What to do about message loss!?

PR 4444 OL‘OI"//[;@f’ ﬂb (y{")’)’

TECHNIQUE #2: TIMEQUT

Sender Receiver
[send message] — X
[start timer]

... waiting for ack ...

[timer goes off]
[send message] —

— [recv message]
— [send ack]

[recv ack] -~

TIMEQUT

AQ.\(V@_’(
How long to wait? ch \\?E@
Mo w
Too long? Cv —
— System feels unresponsive /7
C5

Too short!?

— Messages needlessly re-sent

— | Messages may have been dropped due to overloaded server. Resending makes
overload worse!

LOST ACK PROBLEM

Sender
[send message] —

Receiver

[timeout]
[send message] —

e

"~ [recv message]

X<—

4 be
ﬂw;;
oran k.
e

—[send ack]

~ [ignore message]
— [send ack]

[recv ack] N

SEQUENCE NUMBERS o
o

Sequence numbers quz 1,;7
- senders gives each message an increasing unique seq number

- receiver knows it has seen all messages before N

,Y,/eY
ik 4
/] 'YLCV {L
Suppose message K is received. XM wov 1
> A .
- if K <= N, Msg K is already delivered, ignore it M /ng”’@—
- if K= N + [, first time seeing this message A“"’a > veer >
-ifK>N+ 17 _ e
. jo% Tt mesage Y Y

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order

Timeouts are adaptive

COMMUNICATIONS OVERVIEW

Raw messages: UDP MM(

AL

R AAY
Reliable messages: TCP

Remote procedure call: RPC

(@

. m/(_
Remote Procedure Call EE— }MZL:}?% L ofi‘é’“ Tc? or UDP
< a

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function! f SovveY
r\f\-

pain € oy o
D e
e

/th:/\k C)

chit RPC S

Machine A Machine B 20
int main(...) { int foo(char *msg) {

int x = foo("hello”);

w"’“)f be” B _
(PN_UK/”*‘/’ int foo(char *msg) {

send msg to B
recv msg from B

Sanl (L’//« /;MU“"”

6id foo_listener() {

RPC

,(U“‘/Q Machine A oindirs ' Machine B
: : ol~rALY: :
|0 . o~ int main(...) { int foo(char *msg) {

-

XA’J\ int x = foo("hello”); \(/
} NV s }
(.) 4)
client int foo(char *msg) {)f)si/d‘i = ! void foo_listener() { server
wrapper send msg to B . I wh||e(I) { wrapper
recv msg from B pend recy, call foo
) N vy }
J J "
d’o - lﬂjk-% J W\
H"W 2'0 [Ae{ %}L{'\’ q/ ﬂkﬂﬂp

,[«m(/f\”” aﬂzww(w& 1 erc ﬂ/;[,m'% /
L_,))o%u Sty eam >

RPCTOOLS o bugiee

RPC packages help with two components

(1) Runtime library /
— Thread pool A’vao e,

— Socket listeners call functions on server

(2) Stub generation s ’FDO (M’W‘j)

— Create wrappers automatically

— Many tools available (rpcgen, thrift, protobufs) l

ot AT
st el

WRAPPER GENERATION

Wrappers must do conversions:

- client arguments to message

- message to server arguments

- convert server return value to message

- convert message to client return value

Need uniform endianness (wrappers do this)

Conversion is called marshaling/unmarshaling, or serializing/deserializing

WRAPPER GENERATION: POINTERS

Why are pointers problematic?
Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

RPG OVER TCP?

Sender Receiver
[call]
[tcp send]—
— [recv]
__________________ [ack]
DA [exec call]
[return]

—[tcp send]

RPG OVER UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender Receiver
[call]
[udp send
]\>[recv]
[exec call]
[return]

/tcp send]

[recv]

NEXT STEPS

Review for Midterm 3

Last lecture!

