
PERSISTENCE: FILE API

Shivaram Venkataraman
CS 537, Spring 2023

ADMINISTRIVIA

Project 5

Project 6, extra slip days

Midterm 2: Today!

·

AGENDA / LEARNING OUTCOMES

How to name and organize data on a disk?

What is the API programs use to communicate with OS?

RECAP

DISKs summary

• Disks: seek between tracks, rotate within a track
• I/O time: rotation + seek + transfer
• Sequential vs random throughput
• Scheduling: SSTF, SCAN, C-SCAN

QUIZ 15 https://tinyurl.com/cs537-fa24-q15

DISKS FILES

abstractora 3
① device specific detail
② dynainically allow

storage
③ permission agess , control

filesSkydins
abstractions

What is a File?

Array of persistent bytes that can be read/written

File system consists of many files
Refers to collection of files
Also refers to part of OS that manages those files

Files need names to access correct one

Three types of names
– Unique id: inode numbers
– Path
– File descriptor

neadme test.C

D
-

-

* ext ,
N

-> low level id per file

location
size=12

inodes

0

location
size1

location
size2

location
size=63
…

file

file

in
od

e
nu

m
be

r

Data

Meta-data

-
sector

sector
20

disk (perfile metadata hello .c - in
0

D

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)
write(int inode, void *buf, size_t nbyte)
seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

-

-

-

not user friendl E
-

-

Paths

String names are friendlier than number names
File system still interacts with inode numbers
Store path-to-inode mappings in a special file or rather a Directory!# *

special

Ava file

location
size=12

inodes

0

location
size1

location
size2

location
size=63
…

in
od

e
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

-> int main() 3 -

--
↑

I - tello2

↑
/hello

I noot div

Paths

Directory Tree instead of single root directory
File name needs to be unique within a directory

 /usr/lib/file.so
 /tmp/file.so

Store file-to-inode mapping in each directory

~

- ~
div

#
~

-

~

location
size=12

inodes

0

location
size1

location
size2

location
size=63
…

in
od

e
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

Example: read /hello

Reads for getting final inode called “traversal”

&

↑
W/user/fanira/a .
+x+

L ↓ ↳Y
absolute

File API (attempt 2)

read(char *path, void *buf, off_t offset, size_t nbyte)
write(char *path, void *buf, off_t offset, size_t nbyte)

Disadvantages?

Expensive traversal!
Goal: traverse once

-

-

1a/b/e/d . Ex+
↓
5 op

File Descriptor (fd)

Idea:
Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).
Do reads/writes via descriptor, which tracks offset

Each process:
File-descriptor table contains pointers to open file descriptors

Integers used for file I/O are indexes into this table
 stdin: 0, stdout: 1, stderr: 2

-
> cashe

* accessed viad

-

F

File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
 - string names
 - hierarchical
 - traverse once
 - offsets precisely defined

ww cashe inode

113
-

-

=

I
-
-

FD Table (xv6)

struct file {
...
struct inode *ip;
uint off;

};

// Per-process state
struct proc {

...
struct file *ofile[NOFILE]; // Open files
...

}

struct {
 struct spinlock lock;
 struct file file[NFILE];
} ftable;

>

-
open file table↑

E

=

all processesI ni
t Ishaned among

fds

-> per process

Code Snippet

0
1
2
3
4

offset = 12
inode = 23

open file table
(shared by all processes)

fd table
per process

location = …
size = …

FD Table

inode table
(shared by all processes)

offset =
inode =

offset = 0
inode = 23

location = …
size = …

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4

ofile (xv)
Stable(x vs)

⑧12L=·-
*

#
-

Code Snippet

0
1
2
3
4

offset =
inode =

open file table
(shared by all processes)

fd table (pid 4)

location = …
size = …

FD Table

inode table
(shared by all processes)

offset =
inode =

offset =
inode =

location = …
size = …

0
1
2
3
4

fd table (pid 5)

O
-
-

E

-

Code Snippet

0
1
2
3
4
5

offset =
inode =

fds
fd table

location = …
size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3
read(fd1, buf, 12);
int fd2 = open(“file.txt”); // returns 4
int fd3 = dup(fd2); // returns 5

DUP

offset =
inode =

8214
23

23
-

-7
read (fd2 , but , 3)

0..... 4 bytes
-

-
-

read (fd3, but , 3)
5
, 6 , 7 byte0 .

->

-
nead) +d) , but , 2) 12 , 13

READ NOT SEQUENTIALLY
off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK_SET, the offset is set to offset bytes.
If whence is SEEK_CUR, the offset is set to its current
 location plus offset bytes.
If whence is SEEK_END, the offset is set to the size of
 the file plus offset bytes.

struct file {
 ...
 struct inode *ip;
 uint off;
};

setdoffset
-

f.ext
-

- D
-

200 bytes
↳ does not causea disk seek yet !

fd-open (f-+)

I Iseek (fd , 100 , SEEK-SETT
=%Ho 190 Iseek (fd , 10 , SEESCURR)

Head (fd ,
but , 2) 190 , Iseek (fd ,10 . SEEKEND)

191 bete

Practice

Offset for fd1?

Offset for fd2?

Offset for fd3?

-
-

- inode 18

-

--·100 ~ ↑
16

16

WHAT HAPPENS ON FORK?
pid = fork()

if (pid== 0) S

read (fd) , but I
X exit() 10 19 bytes
= 25 3

elses
wait 2)

read (Adl , but , 5)

& 20.....24 ,byte

Communicating Requirements: fsync

File system keeps newly written data in memory for awhile
Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache
Makes data durable

L↳
writes not immediately issued to disk special api

-
-> disk writesare costly
-> sequential
-

-> data lose

-- permate
CTRL+S remains afterpower loss

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

-> deleting inode

A #baw
-- &* net (inode 23)

close(td) : unlink (a+x)
unlink (reare) Flo

rename

rename(char *old, char *new):
- deletes an old link to a file
- creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory

What can go wrong if system crashes at wrong time?

=

atomic op
from user's perspectiveP

- -

dete
bename(read me /hello)

#echt buffered in name D
hello , Ibail

Atomic File Update

Say application wants to update file.txt atomically
If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file
2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it

e
fe.

Async(fileD3) rename (files , files)

-
student X stude ·tmp

1 . update student:Imp

3. Mename i student Imp
student2. Async (Student- tmp)

fa

Directory CALLS

• mkdir()
• readdir()

LINKS

Hard links: Both path names use same inode number
File does not disappear until all hard links removed; cannot link directories

$ echo hello > a.txt
$ ln a.txt b.txt
$ cat b.txt
hello
$ ls –li .

-

A
-

hello (inode 13)
a:ext

=>meFor
1s+

$ cat b .Ext

18 ----- bitet hello

LINKS

Soft or symbolic links: Point to second path name; can softlink to dirs

ln -s oldfile softlink

Confusing behavior:"file does not exist"!
Confusing behavior: "cd linked dir; cd .., in different parent! "

-
shortcuts
-

-
luse/softh/nsplodfile Inso/softlink

- I Eddtite
S um oldfile

Is cat softlink
does not exist

LINKS
-

-
~

=

-
-

-

-

I
- *

-

-

&

LINKS

PERMISSIONS, ACCESS CONTROL

-

&

O --

6.
1. 10100 100

-

6 4 4
Schmod 744 b .x+

111 100 100
schomod utx

b .xt

74 4

Summary

Using multiple types of name provides convenience and efficiency

Special calls (fsync, rename) let developers communicate requirements to file system

Next class: Directory features, Filesystem implementation

