
PERSISTENCE: FILE API

Shivaram Venkataraman

CS 537, Spring 2023

ADMINISTRIVIA

Project 5

Project 6, extra slip days

Midterm 2: Today!

AGENDA / LEARNING OUTCOMES

How to name and organize data on a disk?

What is the API programs use to communicate with OS?

RECAP

DISKs summary

• Disks: seek between tracks, rotate within a track

• I/O time: rotation + seek + transfer

• Sequential vs random throughput

• Scheduling: SSTF, SCAN, C-SCAN

QUIZ 15 https://tinyurl.com/cs537-fa24-q15

DISKS → FILES

What is a File?

Array of persistent bytes that can be read/written

File system consists of many files

Refers to collection of files

Also refers to part of OS that manages those files

Files need names to access correct one

Three types of names

– Unique id: inode numbers

– Path

– File descriptor

location

size=12

inodes

0

location

size
1

location

size
2

location

size=6
3

…

file

file

in
o
d
e

n
u
m

b
e
r

Data

Meta-data

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

seek(int inode, off_t offset)

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

Paths

String names are friendlier than number names

File system still interacts with inode numbers

Store path-to-inode mappings in a special file or rather a Directory!

location

size=12

inodes

0

location

size
1

location

size
2

location

size=6
3

…

in
o
d
e

n
u
m

b
e
r

“readme.txt”: 3, “hello”: 0, …

Paths

Directory Tree instead of single root directory

File name needs to be unique within a directory

 /usr/lib/file.so

 /tmp/file.so

Store file-to-inode mapping in each directory

location

size=12

inodes

0

location

size
1

location

size
2

location

size=6
3

…

in
o
d
e

n
u
m

b
e
r

“readme.txt”: 3, “hello”: 0, …

Example: read /hello

Reads for getting final inode called “traversal”

File API (attempt 2)

read(char *path, void *buf, off_t offset, size_t nbyte)

write(char *path, void *buf, off_t offset, size_t nbyte)

Disadvantages?

Expensive traversal!

Goal: traverse once

File Descriptor (fd)

Idea:

Do expensive traversal once (open file)
Store inode in descriptor object (kept in memory).

Do reads/writes via descriptor, which tracks offset

Each process:

File-descriptor table contains pointers to open file descriptors

Integers used for file I/O are indexes into this table

 stdin: 0, stdout: 1, stderr: 2

File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

advantages:

 - string names

 - hierarchical

 - traverse once

 - offsets precisely defined

FD Table (xv6)
struct file {

...

struct inode *ip;

uint off;

};

// Per-process state

struct proc {

...

struct file *ofile[NOFILE]; // Open files

...

}

struct {
 struct spinlock lock;
 struct file file[NFILE];
} ftable;

Code Snippet

0
1
2
3
4

offset = 12

inode = 23

open file table

(shared by all processes)

fd table

per process

location = …

size = …

FD Table

inode table

(shared by all processes)

offset =

inode =

offset = 0

inode = 23

location = …

size = …

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

Code Snippet

0
1
2
3
4

offset =

inode =

open file table

(shared by all processes)

fd table (pid 4)

location = …

size = …

FD Table

inode table

(shared by all processes)

offset =

inode =

offset =

inode =

location = …

size = …

0
1
2
3
4

fd table (pid 5)

Code Snippet

0
1
2
3
4
5

offset =

inode =

fds
fd table

location = …

size = …

inode

“file.txt” points here

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

int fd3 = dup(fd2); // returns 5

DUP

offset =

inode =

READ NOT SEQUENTIALLY
off_t lseek(int filedesc, off_t offset, int whence)

If whence is SEEK_SET, the offset is set to offset bytes.

If whence is SEEK_CUR, the offset is set to its current

 location plus offset bytes.

If whence is SEEK_END, the offset is set to the size of

 the file plus offset bytes.

struct file {
 ...
 struct inode *ip;
 uint off;
};

Practice

Offset for fd1?

Offset for fd2?

Offset for fd3?

WHAT HAPPENS ON FORK?

Communicating Requirements: fsync

File system keeps newly written data in memory for awhile

Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache

Makes data durable

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when there are no references

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

rename

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data

Even when renaming to new directory

What can go wrong if system crashes at wrong time?

Atomic File Update

Say application wants to update file.txt atomically

If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file

2. fsync file.txt.tmp

3. rename file.txt.tmp over file.txt, replacing it

Directory CALLS

• mkdir()

• readdir()

LINKS

Hard links: Both path names use same inode number

File does not disappear until all hard links removed; cannot link directories

$ echo hello > a.txt
$ ln a.txt b.txt
$ cat b.txt
hello
$ ls –li .

LINKS

Soft or symbolic links: Point to second path name; can softlink to dirs

ln -s oldfile softlink

Confusing behavior:"file does not exist"!

Confusing behavior: "cd linked dir; cd .., in different parent! "

LINKS

LINKS

PERMISSIONS, ACCESS CONTROL

Summary

Using multiple types of name provides convenience and efficiency

Special calls (fsync, rename) let developers communicate requirements to file system

Next class: Directory features, Filesystem implementation

	Slide 1: PERSISTENCE: FILE API
	Slide 2: ADMINISTRIVIA
	Slide 3: AGENDA / LEARNING OUTCOMES
	Slide 4: RECAP
	Slide 5: DISKs summary
	Slide 6: QUIZ 15
	Slide 10: DISKS  FILES
	Slide 11: What is a File?
	Slide 12
	Slide 13: File API (attempt 1)
	Slide 14: Paths
	Slide 15
	Slide 16: Paths
	Slide 17
	Slide 18: File API (attempt 2)
	Slide 19: File Descriptor (fd)
	Slide 20: File API (attempt 3)
	Slide 21: FD Table (xv6)
	Slide 22: Code Snippet
	Slide 23: Code Snippet
	Slide 24: Code Snippet
	Slide 25: READ NOT SEQUENTIALLY
	Slide 26: Practice
	Slide 27: WHAT HAPPENS ON FORK?
	Slide 28: Communicating Requirements: fsync
	Slide 29: Deleting Files
	Slide 30: rename
	Slide 31: Atomic File Update
	Slide 32: Directory CALLS
	Slide 33: LINKS
	Slide 34: LINKS
	Slide 35: LINKS
	Slide 36: LINKS
	Slide 37: PERMISSIONS, ACCESS CONTROL
	Slide 38: Summary

