
PERSISTENCE: FILE SYSTEMS

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Midterm 2?

Project 5 – Due Nov 19th (one week from today)

Shivaram’s OH / next week schedule

AGENDA / LEARNING OUTCOMES

How does file system represent files, directories?

What steps must reads/writes take?

RECAP

File API WITH FILE DESCRIPTORS

int fd = open(char *path, int flag, mode_t mode)
read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size_t nbyte)
close(int fd)

advantages:
 - string names
 - hierarchical
 - traverse once
 - offsets precisely defined

STRACE
prompt> echo hello > foo
prompt> cat foo
hello
prompt>
prompt> strace cat foo -- prints system calls performed by program
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...
prompt>

Links

Hard links: Both path names use same inode number
File does not disappear until all hard links removed; cannot link directories

Soft or symbolic links: Point to second path name; can softlink to dirs

Can cause confusing behavior: “file does not exist”!

FILE API Summary

Using multiple types of name provides convenience and efficiency

Hard and soft link features provide flexibility.

Special calls (fsync, rename) let developers communicate requirements to file system

FILESYSTEM DISK STRUCTURES

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

FS Structs: DATA BLOCKS

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Simple layout à Very Simple File System

FS Structs: INODE DATA POINTERS

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

One Inode Block

Each inode is typically 256 bytes (depends on
the FS, maybe 128 bytes)

4KB disk block

16 inodes per inode block.

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

Assume single level (just pointers to data
blocks)

What is max file size?
 Assume 256-byte inodes
 (all can be used for pointers)
 Assume 4-byte addrs

How to get larger files?

inode

data data data data

inode

indirect indirect indirect indirect

Indirect blocks are stored in regular data blocks

Largest file size with 64 indirect blocks? Any Cons?

inode

indirectdata data data

Better for small files!
How to handle even larger files?

Directories
File systems vary

Common design:
Store directory entries in data blocks

 Large directories just use multiple data blocks
 Use bit in inode to distinguish directories from files

Various formats could be used
- lists
- b-trees

valid name inode
1
1
1

.
..

foo

134
35
80

1 bar 23

FS Structs: BITMAPS

D IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

How do we find free data blocks or free inodes?

Superblock

Need to know basic FS configuration metadata, like:
- block size
- # of inodes

Store this in superblock

FS Structs: SUPERBLOCK

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

QUIZ 16
The following command is executed:

echo "Hello World" > foo.txt

What produces

openat(AT_FDCWD, "foo.txt", O_RDONLY) = 3
read(3, "Hello World\n", 131072) = 12
write(1, "Hello World\n", 12) = 12
read(3, "", 131072) = 0
close(3) = 0
close(1) = 0

QUIZ 16
openat(AT_FDCWD, "foo.txt", O_RDONLY|O_NOCTTY) = 3
read(3, "Hello World\n", 98304) = 12
read(3, "", 98304) = 0
close(3) = 0
close(1) = 0

openat(AT_FDCWD, "/proc/filesystems", O_RDONLY|O_CLOEXEC) = 3
close(3) = 0
statx(AT_FDCWD, "foo.txt", ...) = 0
write(1, "-rw-rw-r-- 1 oliphant oliphant 1"..., 55) = 55
close(1)

FS Operations

- open
- read

 - close
 - create file
 - write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

(1) read
(2) read

(3)read
(4)read

(5)read

TIME

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

(1) read
(2) read

(3)write

TIME

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

1. read
2. read

3. read
4. read

5.read
6.write

8.read
9.write

7.write

10.write

TIME

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

(1) read
(2)read
(3)write

(4)write
(5)write

TIME

Efficiency

How can we avoid this excessive I/O for basic ops?
Cache for:
- reads
- write buffering

Overwrites, deletes, scheduling
 Shared structs (e.g., bitmaps+dirs) often overwritten.
 Tradeoffs: how much to buffer, how long to buffe

FFS: FILE LAYOUT IMPORTANCE

Data Blockssuper
block inodes

0 N

bitmaps

slow

Layout is not disk-aware!

PLACEMENT Technique: Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Key idea: Keep inode close to data

Use groups across disks

Strategy: allocate inodes and data blocks in same group.

Replicated superblocks

REPLICATED SUPER BLOCKS

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Is it useful to have multiple super blocks?

PLACEMENT Strategy

Put related pieces of data near each other.
Rules:

1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.

Problem: File system is one big tree
All directories and files have a common root.
All data in same FS is related in some way

Trying to put everything near everything else doesn’t make any choices!

Revised Strategy

Put more-related pieces of data near each other
Put less-related pieces of data far

/a/b
/a/c
/a/d
/b/f

POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Problem: Large Files

Single large file can fill nearly all of a group
Displaces data for many small files

Most files are small!
Better to do one seek for large file than

one seek for each of many small files

SPLITTING LARGE FILES

Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 4MB.

NEXT STEPS
Next class: Journalling

