
PERSISTENCE: FSCK, JOURNALING

Shivaram Venkataraman
CS 537, Fall 2024

Hello !

ADMINISTRIVIA

Project 5 updates

Midterm 2: Solutions, grades

Next week’s schedule

-

->833

↳ The LFS
Zoom Otte :

the : SS

AGENDA / LEARNING OUTCOMES

How to check for consistency with power failures / crashes?

How to ensure consistency in filesystem design?

RECAP
open read write

-
FS API

lesystems
- Desa

FS Structs: SUPERBLOCK

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Basic FS configuration metadata, like block size, # of inodes

free data blocks
inode

Data
Fatadata↑ - - blocks-
->

-

&
inde
blocks

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

1. read
2. read

3. read
4. read

5.read
6.write

8.read
9.write

7.write

10.write

TIME
one high
lead

3
many

disk operations

FFS PLACEMENT Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Key idea: Keep inode close to data

Use groups across disks;
Strategy: allocate inodes and data blocks in same group.

trackswith
a

fast file system X
Glinder

number

X
- 00 I IL

replicated
accessing blacks

within the

is cheaper
group

FFS Strategy

Put more-related pieces of data near each other
Put less-related pieces of data far

/a/b
/a/c
/a/d
/b/f

within the

-

↑ group ↑
diegoinupssame

-

FS tree ⑦- -
>

= #

e

-

& C ↳ la
2 dirs

O

&- Ib
=-

4 files
lalb
la/C files go

with

la1d parent die
1b If

Problem: Large Files

Single large file can fill nearly all of a group
Displaces data for many small files

Most files are small!
Better to do one seek for large file than

one seek for each of many small files

~ 80-20 behavior

I " large
small ↓amost

the bytes

SPLITTING LARGE FILES

Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”

block
Ainde

· 248KB [small des.. Fiin size files Pts f ↓
>

O Bata

blocks

-

-

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 4MB.

-> parent

-

↳ balance inde usage

-

-

> Balance data blocks usage

OTHER FFS FEATURES

FFS also introduced several new features:
– large blocks (with libc buffering / fragments)
– long file names
– atomic rename
– symbolic links

Inspired modern files systems, including ext2 and ext3

FILE SYSTEM CONSISTENCY

File System CONSISTENCY Example

Superblock: field contains total number of blocks in FS
DATA = N

Inode: field contains pointer to data block; possible DATA?
DATA in {0, 1, 2, …, N - 1}

Pointers to block N or after are invalid!
Total-blocks field has redundancy with inode pointers

-

-
-

Consistena
- - requirement

to

points
- indevalid DB-

Why is consistency challenging?

File system may perform several disk writes to redundant blocks

If file system is interrupted between writes, may leave data in inconsistent state

What can interrupt write operations?

 - power loss
 - kernel panic
 - reboot

FILE APPEND EXAMPLE ↑ loss come dist

space

#only DB is on dink :

->
Old state

-

① only Db is on dish : lose this

block

updated ② only inde is on disk : garbage data
inconsistency DB & inode

I -state
- TargetO O -I ↳

new data

updated

How can file system fix Inconsistencies?

Solution #1:

FSCK = file system checker
Strategy:

After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?
Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

--when you
reboot

- matches

bitmap 5
allAsters to

- data Blocks

Fsck Checks

Do superblocks match?
Is the list of free blocks correct?
Do number of dir entries equal inode link counts?
Do different inodes ever point to same block?
Are there any bad block pointers?
Do directories contain “.” and “..”?
…

↑ bitmap

I hard
links

FREE BLOCKS EXAMPLE

inode
link_count = 1

block
(number 123)

data bitmap
0011001100

for block 123

1 fix is update the

bitmap

↳ consistent

"Correct" ??

LINK COUNT EXAMPLE

Dir Entry

Dir Entry

inode
link_count = 1

name inode

foo 25

-
makes it

I name
ia to 2

Consistent
25

hand link

Duplicate Pointers

inode
link_count = 1

block
(number 123)

inode
link_count = 1

->
a block

can only

m belong to

1 file

block contents- 456 CopyJ to

456

BAD POINTER

inode
link_count = 1

super block
tot-blocks=8000

9999
par is

Y XX pointing
to

invalid Block

fix

↳ clear this pointer

Consistent

QUIZ 17

Offset for inode with number 0 (in kB)?

Offset for inode with number 4 (in kB)?

inde size = 256 bytes
block size 4 IB

=

O 4kB 8Ki 121B

12 kB

12kB
+ 4x 256

= 13 kB

-
data block

dis---- ref Count

↳ empty

-T --

=>

y

->
O0

-

what are the operations ?

↳ I new things in roof div

directories
↳ they

are

(1) (.. ,.)

empty

= ~

- >
&=>

↑ -

/ < file created 12 I same
inode
-

-

I
im

Proper root dis - hard links

~ Contents of 12 (and /m)
is

footofoo

Problems with fsck

Problem 1:
– Not always obvious how to fix file system image

– Don’t know “correct” state, just consistent one
– Easy way to get consistency: reformat disk!

Problem 2:
 Checking a 600GB disk takes ~70 minutes

ffsck: The Fast File System Checker
Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Consistency Solution #2: Journaling

Goals
– Ok to do some recovery work after crash, but not to read entire disk
– Don’t move file system to just any consistent state, get correct state

Atomicity
– Definition of atomicity for concurrency: operations in critical sections are not

interrupted by operations on related critical sections
– Definition of atomicity for persistence: collections of writes are not interrupted

by crashes; either (all new) or (all old) data is visible

Tatabase
-

Consistency vs ATOMICITY

Say a set of writes moves the disk from state A to B

A B

consistent states

all states

fsck gives consistency
Atomicity gives A or B.

empty

F 2

JOURNAL LAYOUT

Transaction

t fail before journal
write

↳ old state

writes

&day ona dir
O O O

I

persist ↳ write down

are
-> what you
↓ ↓ I in

↑

Tx Begin
end updatingtournal

JOURNAL write AND ChECKPOINTS

0 5 6 12111 2 3 4 7 8 9 10

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

checkpointing Journal

* S
Tx A B T

B A start blocks block 2
End

- -
-

->

-

After checkpointing clear journal
entries

JOURNAL REUSE AND ChECKPOINTS

A

0 5

B 5,2 A B TxE

6 12111 2 3 4 7 8 9 10

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

transaction: write C to block 4; write T to block 6

a

Ordering FOR CONSISTENCY

write order
9,10,11

12
4,6

Barriers
1) Before journal commit, ensure journal entries complete
2) Before checkpoint, ensure journal commit complete
3) Before free journal, ensure in-place updates complete

A

0 5

B

6 12111 2 3 4 7 8 9 10

transaction: write C to block 4; write T to block 6

Start Tx End
C T 4 . 6

C T
magic
bits

·

all writes before the-

sync ,

barrier-
barrier are persisted
wher it returns donetary >-

6al

after K-

this =

replay
transaction

CHECKSUM OPTIMIZATION

A

0 5

B

6 12111 2 3 4 7 8 9 10

Can we get rid of barrier between (9, 10, 11) and 12 ?

In last transaction block, store checksum
of rest of transaction

During recovery: If checksum does not
match, treat as not valid

write order before
9,10,11

12
4,6
12

write order after

mdS

SHA
C

7256 bytes

↑
12 kB -

--- checksum
-

-

recalculate

&

OTHER OPTIMIZATIONS
Batched updates
 - If two files are created, inode bitmap, inode etc. get written twice
 - Mark as dirty in-memory and batch updates

Circular log

T4T3T2T1Journal:

0 128 MB

-
-

-
-

-

How to avoid writing all disk blocks Twice?

Observation: Most of writes are user data (esp sequential writes)

Strategy: journal all metadata, including
superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient.

-

Ty

↳ metadata

bitmaps
indes

data

METADATA JOURNALING

transaction: append to inode I

I’

0 5

B’ TxB B’ I’ TxE

6 12111 2 3 4 7 8 9 10

Crash !?!

-

&

Data
blocks -

-

Ordered Journaling

What happens if crash in between?

I D

0 5

B

6 12111 2 3 4 7 8 9 10

Still only journal metadata. But write data before the transaction!

write order
7

9, 10, 11
12

2, 4

-

TX

e L
O Begin

B' 1
Th

end
-

date block is

-order -> data goes first
on barrier -y
dist

SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK:
 Fix file system image after crash happens
 Too slow and only ensures consistency

Journaling
 Write a transaction before in-place updates
 Checksum, batching, ordered journal optimizations

NEXT STEPS

Next class: How to create a file system optimized for writes

