Persistence: 1/O and Disk Devices
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2024

Louis Oliphant

Persistence: 1/O and Disk Devices

Administrivia

@ Project 4 due Tue Nov 5th © 11:59pm
@ Exam 2, Thu, Nov 7th 5:45-7:15pm

e Same format as Exam 1
e Bring ID, #2 Pencil, and 1 sheet of notes

o Last Name:
@ A-K - Van Vleck B102
@ L-Z - Ingraham B10

e McBurney 5:45-8:00pm — CS 1257

Louis Oliphant

Persistence: 1/O and Disk Devices

|/O Devices Agenda

How OS interacts with 1/O Devices
How HDD is organized

Disk Performance
Disk Scheduling

Louis Oliphant

Persistence: 1/O and Disk Devices

Prototypical Systems Architecture

PCle Memory
Graphics Interconnect
CPU Memory Graphics [<{ummm—)> CPU Memory
S
4 Memory Bus l o
(proprietary) PCle eSATA
VO Ch [| Disk
/ ip
< » General /O Bus = 17
(e.g., PC) Network

Dii,_l

uUSB

Graphics

< » Peripheral I/O Bus
(e.g., SCSI, SATA, USB)
ﬁ @ @ @ @ Direct Media Interface

@ Slow devices connect through
@ Multiple Bus Levels an 1/0O chip
@ Faster busses are shorter, more

expensive
Louis Oliphant

| Keyboard]

Persistence: 1/O and Disk Devices

OS Communication with Cannonical Device

while (STATUS == BUSY) @ OS uses polling to check
status

@ Programmed 1/0 (PI10O)

; //wait until device is not busy
write data to DATA register)
write command to COMMAND register when main CPU controls

(Doing so starts the device and executes the command) data. movement
while (STATUS == BUSY) @ Motivates Hardwar.e

; //wait until device is done with request Interrupts for effeciency

Registers | Status Command Data Interface

Micro-controller (CPU)
Memory (DRAM or SRAM or both) Internals
Other Hardware-specific Chips

Louis Oliphant

Persistence: 1/O and Disk Devices

More Efficient 1/0O

@ Polling

CPU | 1T |1 |1 |1]A1 1111711

Disk 1111]1]1

@ Interrupts (allow other process to run)

CPU | 1 [1 |11 |1 ey 1 1| 1[1/[1

Disk 111]1]1

@ OS still copies data to device

CPU |1 [1|1 |1]1|c|c|cCc R 1 1

Disk 11111

@ OS uses Direct Memory Access (DMA) which handles the copy portion of 10
@ Just pass data location and size to DMA Controller

CPU | 1 [1| 1] 1] 1 i 1 | 1

DMA c|lc]|c

Disk 11111

Louis Oliphant

Persistence: 1/O and Disk Devices

Methods of 1/O Interactions

e Explicit 1/O Instructions
@ on x86, the in and out instructions used to communicate with device
e OS conrols register with data, and knows specific port which names the
device, issues instruction.
@ Memory-mapped 1/0
e Device appears as memory location
o OS uses same load/store commands as for regular memory
e Hardware routes the instruction to the device instead

Louis Oliphant

Persistence: 1/O and Disk Devices

Device Driver

@ Many, many devices, each has its own protocol

@ Device driver for each device, rest of OS just interacts with driver
@ OS often has raw interface to directly read and write blocks

@ 70% of OS code is found in device drivers

Application g
LLLLL POSIX API [open, read, write, close, etc.] LR
File System Raw
Generic Block Interface [block read/write] §
Generic Block Layer FE)
Specific Block Interface [protocol-specific read/write] §

Device Driver [SCSI, ATA, etc.]

Louis Oliphant

Persistence: 1/O and Disk Devices

Simple IDE Disk Driver (xv6)

void ide1£z(struct buf =b) {
acquire (&ide_lock);
for (struct buf x+«pp = &ide_queue; »pp; pPp=& (xpp)->gnext) Yﬁ \ \ \ \

; // walk queue —
*pp = b; // add request to end
if (ide_qgqueue == b) // if q is empty
ide_start_request (b); // send req to disk
while ((b->flags & (B_VALID|B_DIRTY)) != B_VALID)
slee &ide_lock); // wait for completion

release (&ide_lock);

void ide_intr () {
< 3 T
struct buf =xb;
acquire (&ide_lock);
if (!(b->flags & B_DIRTY) && ide_wait_ready() >= 0)

insl (0x1f0, b->data, 512/4); // if READ: get data

b->flags |= B_VALID;

b->flags &= "B_DIRTY;

wakeup // wake waiting process
if ((ide_gueue = b->gnext) != 0) // start next request

ide_start_request (ide_queue); // (if one exists)
release (&ide_lock);

}

Louis Oliphant

Persistence: 1/O and Disk Devices

Simple IDE Disk Driver (xv6) (cont.)

static int ide_wait_ready () {
while (((int r = inb(0x1f7)) & IDE_BSY) || !(r & IDE_DRDY))
; // loop until drive isn’t busy
// return -1 on error, or 0 otherwise

static void ide_start request (struct buf *b) {
ide_wait_ready () ;
outb (0x3f6, 0); // generate interrupt

outb (0x1£f2, 1); // how many sectors?
outb (0x1f3, b->sector & 0xff); // LBA goes here
outb (0x1f4, (b->sector >> 8) & 0xff); // ... and here
outb (0x1£f5, (b->sector >> 16) & 0xff); // ... and here!
outb (0x1f6, 0xe0 | ((b->dev&l)<<d4) | ((b->sector>>24)&0x0f));
if (b—->flags & B_DIRTY) {
outb(0x1f7, IDE_CMD_WRITE); // this is a WRITE
outsl (0x1£f0, b->data, 512/4); // transfer data too!
} else {
outb(0x1f7, IDE_CMD_READ); // this is a READ (no data)

Louis Oliphant

Persistence: 1/O and Disk Devices

Hard Disk Interface

2Rl LA

@ Consists of sectors (512 byte
blocks) T

@ Sectors numbered from O to
n — 1, address space

@ Many file systems read/write
4KB at a time

@ Sectors written along tracks

@ Arm moves head as disk rotates

@ Sectors have a skew from one
track to another

@ In multi-zoned disk, tracks in
different zone have more sectors

Louis Oliphant

N
RoLates this way

Track skew: 2 blocks

Persistence: 1/O and Disk Devices

e
Hard Disk Mechanics

@ Platters has two surfaces and
— .
rotate around spindle

@ Head and arm on each side of

platter 3600
@ Rate of Rotation: RPM \f.‘K

@ Time to read/write divided into

three components:
o Seek time (1)
o Rotation time ()
e Transfer time (g\

TI /O — Tseek + Trotation + Ttransfer

/

Louis Oliphant

Persistence: 1/O and Disk Devices

SEEK, ROTATE, TRANSFER

Seek cost: Function of cylinder distance Depends on rotations per minute (RPM)
Not purely linear cost 7200 RPM is common, 15000 RPM is high end
Must accelerate, coast, decelerate, settle

. Average rotation: Half of time for | rotation
Settling alone can take 0.5 - 2 ms —

Entire seeks often takes 4 - 10 ms

Average seek = |/3 of max seek Pretty fast: depends on RPM and sector density.

M oy Jetk”
qvb .\'c_c(<'.

|00+ MB/s is typical for maximum transfer rate

Total time = seek + rotation + transfer time

WORKLOAD PERFORMANCE

So...

- seeks are glow.
- rotations are slow

—
- transfers are fast

How does the kind of workload affect performance?
Sequential: access sectors in order

Random: access sectors arbitrarily

O, 000 M/
(900 mr _ C’D [_ Lf/\nr

My _ e | 602

\ (o\’, TS,OOOrd, | & ETSK SllgéE‘\C {.("/,:)99 cot.
Cheetah Barracuda
o M8 Capacity 300 GB | TB

/p\ RPM 15000 Avy co¥: 2 [7,200

\75 €L Avg Seek 4 ms ” 9 ms
Max Transfer 125 MB/s |05 MB/s
Platters 4 4
Cache |6 MB 32 MB

Sequential read 100MB: what is throughput

Mr -(-21\4 1‘(&09/"\};@ Sezwm'-:/
feek r-‘A’

R ¢ ndpm Ceed HKK |er.{2/fec_ P vadon

Uomr 4200 €301 = by Gk _ W8] ny—>[0 466
o — Nee 152 < 046 Wl M@ [re

Jeele "9“' b/‘ﬂ/

/0 SCHEDULERS

/0 SCHEDULERS

Given a stream of I/O requests, in what order should they be served!?
Much different than CPU scheduling

Position of disk head relative to request position matters more than length of job

FGFS (FIRST-COME-FIRST-SERVE)

Qoo | \?037-\ ?w?L

Do reml7o

g—

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload
take!Requests are given in sector numbers

(O K= (O = (O (o = 6on,
300001, 700001, 300002, 700002, 300003, 700003

9 - =20
300001, 300002, 300003, 700001, 700002, 700003 = <%

SSTF (SHORTEST SEEK TIME FIRST)

Strategy always choose request that requires least seek time

(approximate total time with seek time)
Greedy algorithm (just looks for best NEXT decision)

How to implement in OS?

Disadvantages? + . cueXTon

SCAN @

SCAN or Elevator Algorithm: Aem

— Sweep back and forth, from one end of disk other, serving requests as pass
that cylinder

— Sorts by cylinder number;ignores rotation delays

C-SCAN (circular scan): Only sweep in one direction

Pros/Cons! (- JCAIV pmoe e “’Ld—r\ [ca.
Lo/\: }5{\Dce ('a"'-"\'Of\

SPTF (SHORTEST POSITIONING TIME FIRST)

Seele £ cod etion

-l M/)‘Q("‘u\.‘. :-,. DJ'?

No' 0J doest Kasuw 1C# /.L&W,J.‘

SATF
(SHORTEST ACCESS
TIME FIRST)

SCHEDULERS

OS

Scheduler
Where should the

scheduler go!?

Scheduler
Disk

WHAT HAPPENS?

Assume 2 processes each calling read() with C-SCAN P.ﬂ- R PR
Py R P

void reader(int fd) {
char buf[1024];
int rv;

while((rv = read(fd, buf)) != @) {

assert(rv);
// takes short time, e.g. @ cu \K—,\ﬂ l/ﬂ)

process(buf, rv);

: P RIWPRIWS
} (/Vo/"(bon/"u.;,\a ‘ (/0 ok CI;L-[‘MD"
L. F, RIWPR
4 '\'t'a O{"‘ f
Jeck 4co { o erupR

“ ce.‘.o "rMJ /
Wlﬁ’u‘ o W

WORK CONSERVATION

Worlk conserving schedulers always try to do work if there’s work to be done
Sometimes, it’s better to wait instead if system anticipates another request will arrive

Possible improvements from /O Merging

SUMMARY

Disks: Specific gecometry with platters, spindle, tracks, sector

I/O Time: rotation_time + seek time + transfer time
—_— e -—
Sequential throughput vs. random throughput

— ’-

Scheduling approaches: SSTF, SCAN, C-SCAN

Benefits of violating work conservation

Persistence Unit:

@ Intro / Disks

File System API

File Systems Implementation / FFS
Journaling

Log Structured FS

SSDs

Louis Oliphant

Persistence: 1/O and Disk Devices

