
PERSISTENCE: Log-structured FileSystem

Sujay Yadalam

CS 537, Fall 2024

Mobile User

ADMINISTRIVIA

Project 5 due today!

Project 6 will be out!

Midterm re-grades will be done soon

AGENDA / LEARNING OUTCOMES

How to optimize a filesystem that performs better for writes?

What are some challenges and how to overcome them?

RECAP

Mobile User

FILE APPEND EXAMPLE

Mobile User

HOW TO FIX INCONSISTENCIES?

1) FSCK = file system checker

- Read entire disk and fix issues: too slow

- Do not know "correct" state; knows a consistent state

2) Journaling

- Write to a special journal before writing in-place

JOURNAL LAYOUT

Mobile User

In-CLASS quiz

https://tinyurl.com/cs537-fa24-q18

https://tinyurl.com/cs537-fa24-q18

DATA journaling

TxB
Data

Bitmap

0 5

Inode A B TxE

6 12111 2 3 4 7 8 9 10

Checkpoint: Writing new data to in-place locations

After checkpointing, journal re-used for next transaction

Mobile User

Ordering FOR CONSISTENCY

write order

 7,8,9,10,11

12

4,6

Barriers

1) Before journal commit, ensure journal entries complete

2) Before checkpoint, ensure journal commit complete

3) Before free journal, ensure in-place updates complete

A TxB
Data

Bitmap

0 5

B Inode A B TxE

6 12111 2 3 4 7 8 9 10

Mobile User

METADATA JOURNALING

Idea: avoid data journaling; only journal metadata; But

write data before the transaction!

I’ D

0 5

B’ TxB B’ I’ TxE

6 12111 2 3 4 7 8 9 10

transaction: append to inode I

Mobile User

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

– Single operation (create a new file) requires multiple random writes

– RAID-4 and RAID-5 random write performance is poor

– Large gap between sequential and random I/O performance

Mobile User

LFS Performance Goal
Motivation:

– Single operation (create a new file) requires multiple random writes

– RAID-4 and RAID-5 random write performance is poor

– Large gap between sequential and random I/O performance

Idea: use disk purely sequentially

No random writes!

Mobile User

WHERE DO INODES GO?

Is writing sequentially sufficient?

Is writing sequentially sufficient?

No!

Example:

Write block

 Perform computation

 Write block (but disk has already rotated past the desired block)

LFS Strategy

File system buffers writes in main memory until “enough” data

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

Mobile User

LFS Strategy

File system buffers writes in main memory until “enough” data

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

• How much to buffer?

• Enough to get good sequential bandwidth from disk (MB)

BUFFERED WRITES

Mobile User

WHAT IS DIFFERENT FROM FFS?

1) What data structures has LFS removed?

allocation structs: data + inode bitmaps

WHAT IS DIFFERENT FROM FFS?

1) What data structures has LFS removed?

 allocation structs: data + inode bitmaps

Mobile User

CHALLENGE 1: How to locate latest inodes?

Problem: Inodes are no longer at fixed offset; multiple versions

Solution: Use imap structure

imap = maps inode number -> location on disk

Mobile User

IMAP EXPLAINED

READING IN LFS

1. Read the Checkpoint region

2. Read all imap parts, cache in mem

3. To read a file:

1. Lookup inode location in imap

2. Read inode

3. Read the file block

Mobile User

CHALLENGE 2: What to do with old data?

Old versions of files → garbage

Approach 1: garbage is a feature!

– Keep old versions in case user wants to revert files later

– Versioning file systems

– Example: Dropbox

Approach 2: garbage collection

Mobile User

Garbage Collection

Need to reclaim space:

1. When no more references (any file system)

2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)

 - Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid

Mobile User

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

FREEUSED

Garbage Collection

USEDFREEdisk segments: FREEUSED

10% 95% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it

When move inode, update imap to point to it

Mobile User

Garbage Collection

General operation:

Pick M segments, compact into N (where N < M).

Mechanism:

How does LFS know whether data in segments is valid?

Policy:

Which segments to compact?

Garbage Collection Mechanism

Is an inode the latest version?

– Check imap to see if this inode is pointed to

– Fast!

Is a data block the latest version?

– Scan ALL inodes to see if any point to this data

– Very slow!

How to track information more efficiently?

– Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

Mobile User

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
 // block D is alive
else
 // block D is garbage

Mobile User

Garbage Collection

General operation:

Pick M segments, compact into N (where N < M).

Mechanism:

Use segment summary, imap to determine liveness

Policy:

Which segments to compact?

• clean most empty first

• clean coldest (ones undergoing least change)

• more complex heuristics…

CHALLENGE 3: Crash Recovery

What data needs to be recovered after a crash?

– Need imap (lost in volatile memory)

Better approach?

– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?

– Checkpoint often: poor performance (random I/O)

– Checkpoint rarely: lose more data, recovery takes longer

– Example: checkpoint every 30 secs

CRASH RECOVERY

S1S0disk: S3S2

ptrs to

imap piecesmemory:

checkpoint

after last

checkpoint

tail after last

checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:

 - read checkpoint to find most imap pointers and segment tail

 - find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

LFS SUMMARY

Journaling:

Put final location of data wherever file system chooses

 (usually in a place optimized for future reads)

LFS:

Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: SSDs!

	Slide 1: PERSISTENCE: Log-structured FileSystem
	Slide 2: ADMINISTRIVIA
	Slide 3: AGENDA / LEARNING OUTCOMES
	Slide 4: RECAP
	Slide 5: FILE APPEND EXAMPLE
	Slide 6: HOW TO FIX INCONSISTENCIES?
	Slide 7: JOURNAL LAYOUT
	Slide 8: In-CLASS quiz
	Slide 9: DATA journaling
	Slide 10: Ordering FOR CONSISTENCY
	Slide 11: METADATA JOURNALING
	Slide 12: LOG STRUCTURED FILE SYSTEM (LFS)
	Slide 13: LFS Performance Goal
	Slide 14: LFS Performance Goal
	Slide 15: WHERE DO INODES GO?
	Slide 16: Is writing sequentially sufficient?
	Slide 17: Is writing sequentially sufficient?
	Slide 18: LFS Strategy
	Slide 19: LFS Strategy
	Slide 20: BUFFERED WRITES
	Slide 21: WHAT IS DIFFERENT FROM FFS?
	Slide 22: WHAT IS DIFFERENT FROM FFS?
	Slide 23: CHALLENGE 1: How to locate latest inodes?
	Slide 24: IMAP EXPLAINED
	Slide 25: READING IN LFS
	Slide 26: CHALLENGE 2: What to do with old data?
	Slide 27: Garbage Collection
	Slide 28: Garbage Collection
	Slide 29: Garbage Collection
	Slide 30: Garbage Collection
	Slide 31: Garbage Collection
	Slide 32: Garbage Collection Mechanism
	Slide 33: SEGMENT SUMMARY
	Slide 34: Garbage Collection
	Slide 35: CHALLENGE 3: Crash Recovery
	Slide 36: CRASH RECOVERY
	Slide 37: Checkpoint Summary
	Slide 38: Checkpoint Strategy
	Slide 39: LFS SUMMARY
	Slide 40: NEXT STEPS

