
PERSISTENCE: Log-structured FileSystem

Sujay Yadalam

CS 537, Fall 2024

ADMINISTRIVIA

AGENDA / LEARNING OUTCOMES

How to optimize a filesystem that performs better for writes?

What are some challenges and how to overcome them?

RECAP

In-CLASS quiz

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

– Single operation (create a new file) requires multiple random writes

– RAID-4 and RAID-5 random write performance is poor

– Large gap between sequential and random I/O performance

LFS Performance Goal
Motivation:

– Single operation (create a new file) requires multiple random writes

– RAID-4 and RAID-5 random write performance is poor

– Large gap between sequential and random I/O performance

Idea: use disk purely sequentially

No random writes!

WHERE DO INODES GO?

Is writing sequentially sufficient?

Is writing sequentially sufficient?

No!

Example:

Write block

 Perform computation

 Write block (but disk has already rotated past the desired block)

LFS Strategy

File system buffers writes in main memory until “enough” data

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

LFS Strategy

File system buffers writes in main memory until “enough” data

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

• How much to buffer?

• Enough to get good sequential bandwidth from disk (MB)

BUFFERED WRITES

WHAT IS DIFFERENT FROM FFS?

1) What data structures has LFS removed?

allocation structs: data + inode bitmaps

WHAT IS DIFFERENT FROM FFS?

1) What data structures has LFS removed?

 allocation structs: data + inode bitmaps

CHALLENGE 1: How to locate latest inodes?

Problem: Inodes are no longer at fixed offset; multiple versions

Solution: Use imap structure

imap = maps inode number -> location on disk

IMAP EXPLAINED

READING IN LFS

1. Read the Checkpoint region

2. Read all imap parts, cache in mem

3. To read a file:

1. Lookup inode location in imap

2. Read inode

3. Read the file block

CHALLENGE 2: What to do with old data?

Old versions of files → garbage

Approach 1: garbage is a feature!

– Keep old versions in case user wants to revert files later

– Versioning file systems

– Example: Dropbox

Approach 2: garbage collection

Garbage Collection

Need to reclaim space:

1. When no more references (any file system)

2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)

 - Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

FREEUSED

Garbage Collection

USEDFREEdisk segments: FREEUSED

10% 95% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it

When move inode, update imap to point to it

Garbage Collection

General operation:

Pick M segments, compact into N (where N < M).

Mechanism:

How does LFS know whether data in segments is valid?

Policy:

Which segments to compact?

Garbage Collection Mechanism

Is an inode the latest version?

– Check imap to see if this inode is pointed to

– Fast!

Is a data block the latest version?

– Scan ALL inodes to see if any point to this data

– Very slow!

How to track information more efficiently?

– Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
 // block D is alive
else
 // block D is garbage

Garbage Collection

General operation:

Pick M segments, compact into N (where N < M).

Mechanism:

Use segment summary, imap to determine liveness

Policy:

Which segments to compact?

• clean most empty first

• clean coldest (ones undergoing least change)

• more complex heuristics…

CHALLENGE 3: Crash Recovery

What data needs to be recovered after a crash?

– Need imap (lost in volatile memory)

Better approach?

– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?

– Checkpoint often: poor performance (random I/O)

– Checkpoint rarely: lose more data, recovery takes longer

– Example: checkpoint every 30 secs

CRASH RECOVERY

S1S0disk: S3S2

ptrs to

imap piecesmemory:

checkpoint

after last

checkpoint

tail after last

checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:

 - read checkpoint to find most imap pointers and segment tail

 - find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions

Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

LFS SUMMARY

Journaling:

Put final location of data wherever file system chooses

 (usually in a place optimized for future reads)

LFS:

Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

NEXT STEPS

Next class: SSDs!

	Slide 1: PERSISTENCE: Log-structured FileSystem
	Slide 2: ADMINISTRIVIA
	Slide 3: AGENDA / LEARNING OUTCOMES
	Slide 4: RECAP
	Slide 5: In-CLASS quiz
	Slide 6: LOG STRUCTURED FILE SYSTEM (LFS)
	Slide 7: LFS Performance Goal
	Slide 8: LFS Performance Goal
	Slide 9: WHERE DO INODES GO?
	Slide 10: Is writing sequentially sufficient?
	Slide 11: Is writing sequentially sufficient?
	Slide 12: LFS Strategy
	Slide 13: LFS Strategy
	Slide 14: BUFFERED WRITES
	Slide 15: WHAT IS DIFFERENT FROM FFS?
	Slide 16: WHAT IS DIFFERENT FROM FFS?
	Slide 17: CHALLENGE 1: How to locate latest inodes?
	Slide 18: IMAP EXPLAINED
	Slide 19: READING IN LFS
	Slide 20: CHALLENGE 2: What to do with old data?
	Slide 21: Garbage Collection
	Slide 22: Garbage Collection
	Slide 23: Garbage Collection
	Slide 24: Garbage Collection
	Slide 25: Garbage Collection
	Slide 26: Garbage Collection Mechanism
	Slide 27: SEGMENT SUMMARY
	Slide 28: Garbage Collection
	Slide 29: CHALLENGE 3: Crash Recovery
	Slide 30: CRASH RECOVERY
	Slide 31: Checkpoint Summary
	Slide 32: Checkpoint Strategy
	Slide 33: LFS SUMMARY
	Slide 34: NEXT STEPS

