
CONCURRENCY: LOCKS

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

- Midterm 1: Today!
– Last name on Canvas starts with A-K: Van Vleck B102
– Last name on Canvas starts with L-Z: Ingraham B10

- Project 2, 3 grading

- Code review?

AGENDA / LEARNING OUTCOMES

Concurrency
What are some of the challenges in concurrent execution?
How do we design locks to address this?

RECAP

Motivation for Concurrency

TIMELINE VIEW

Thread 1 Thread 2
mov 0x123, %eax
 mov 0x123, %eax
 add %0x2, %eax

 mov %eax, 0x123

add %0x1, %eax

mov %eax, 0x123

What do we want?

Want 3 instructions to execute as an uninterruptable group
That is, we want them to be atomic

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

More general: Need mutual exclusion for critical sections
 if thread A is in critical section C, thread B isn’t
 (okay if other threads do unrelated work)

Locks
Goal: Provide mutual exclusion (mutex)

Allocate and Initialize
– Pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

Acquire
– Acquire exclusion access to lock;
– Wait if lock is not available (some other process in critical section)
– Spin or block (relinquish CPU) while waiting
– Pthread_mutex_lock(&mylock);

Release
– Release exclusive access to lock; let another process enter critical section
– Pthread_mutex_unlock(&mylock);

Lock Implementation Goals

Correctness
– Mutual exclusion
 Only one thread in critical section at a time
– Progress (deadlock-free)
 If several simultaneous requests, must allow one to proceed
– Bounded (starvation-free)
 Must eventually allow each waiting thread to enter

Fairness: Each thread waits for same amount of time
Performance: CPU is not used unnecessarily

Race Condition with LOAD and STORE

*lock == 0 initially

Thread 1 Thread 2

while(*lock == 1)

 while(*lock == 1)
 *lock = 1

*lock = 1

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

xchg: atomic exchange or test-and-set

// xchg(int *addr, int newval)
// return what was pointed to by addr
// at the same time, store newval into addr
int xchg(int *addr, int newval) {
 int old = *addr;
 *addr = newval;
 return old;
}

How do we solve this ? Get help from the hardware!

movl 4(%esp), %edx
movl 8(%esp), %eax
xchgl (%edx), %eax
ret

SPIN LOCK with XCHG

typedef struct __lock_t {
 int flag;
} lock_t;

void init(lock_t *lock) {
 lock->flag = ??;
}

void acquire(lock_t *lock) {
 ????;
 // spin-wait (do nothing)
}

void release(lock_t *lock) {
 lock->flag = ??;
}

int xchg(int *addr, int newval)

Other Atomic HW Instructions

int CompareAndSwap(int *addr, int expected, int new) {
 int actual = *addr;
 if (actual == expected)
 *addr = new;
 return actual;
}

void acquire(lock_t *lock) {
 while(CompareAndSwap(&lock->flag, ,) ==) ;
 // spin-wait (do nothing)
}

spin spin spin spin

Basic Spinlocks are Unfair

A B

0 20 40 60 80 100 120 140 160

A B A B A B

lock
lockunlock lockunlock lockunlock lockunlock

Scheduler is unaware of locks/unlocks!

Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock.
Each thread spins until their turn.
Use new atomic primitive, fetch-and-add

Acquire: Grab ticket; Spin while not thread’s ticket != turn
Release: Advance to next turn

int FetchAndAdd(int *ptr) {
 int old = *ptr;
 *ptr = old + 1;
 return old;
}

0
1
2
3
4
5
6
7

A lock():
B lock():
C lock():

A unlock():

A lock():
B unlock():

C unlock():
A unlock():

Ticket Lock ExampLE

Ticket Turn

Ticket Lock Implementation

typedef struct __lock_t {
int ticket;
int turn;

}

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
 int myturn = FAA(&lock->ticket);
 // spin

while (lock->turn != myturn);
}

void release(lock_t *lock) {
FAA(&lock->turn);

}

Spinlock Performance

Fast when…
- many CPUs
- locks held a short time
- advantage: avoid context switch

Slow when…
- one CPU
- locks held a long time
- disadvantage: spinning is wasteful

spinspin spin spin spin

CPU Scheduler is Ignorant

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

CPU scheduler may run B, C, D instead of A
even though B, C, D are waiting for A

Ticket Lock with yield

typedef struct __lock_t {
int ticket;
int turn;

}

void lock_init(lock_t *lock) {
lock->ticket = 0;
lock->turn = 0;

}

void acquire(lock_t *lock) {
 int myturn = FAA(&lock->ticket);
 while (lock->turn != myturn)
 yield();
}

void release(lock_t *lock) {
FAA(&lock->turn);

}

spinspin spin spin spin

A B

0 20 40 60 80 100 120 140 160

C D A B C D

lock unlock lock

A

0 20 40 60 80 100 120 140 160

A B

lock unlock lock

no yield:

yield:

Yield Instead of Spin

Spinlock Performance

Waste of CPU cycles?

Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

Even with yield, spinning is slow with high thread contention

Next improvement: Block and put thread on waiting queue instead of spinning

Lock Implementation: Block when Waiting

Remove waiting threads from scheduler runnable queue
(e.g., park() and unpark(threadID))

Scheduler runs any thread that is runnable

RUNNABLE:

RUNNING:

WAITING:

A, B, C, D

0 20 40 60 80 100 120 140 160

A B D contend for lock, C is not contending A has 60 ms worth of work
20ms is the timeslice

Lock Implementation: Block when Waiting

typedef struct {

 bool lock = false;

 bool guard = false;

 queue_t q;

} LockT;

void acquire(LockT *l) {
 while (XCHG(&l->guard, true));
 if (l->lock) {
 qadd(l->q, tid);
 l->guard = false;
 park(); // blocked
 } else {
 l->lock = true;
 l->guard = false;
 }
}

void release(LockT *l) {
 while (XCHG(&l->guard, true));
 if (qempty(l->q)) l->lock=false;
 else unpark(qremove(l->q));
 l->guard = false;
}

Lock Implementation: Block when Waiting
void acquire(LockT *l) {
 while (XCHG(&l->guard, true));
 if (l->lock) {
 qadd(l->q, tid);
 l->guard = false;
 park(); // blocked
 } else {
 l->lock = true;
 l->guard = false;
 }
}

void release(LockT *l) {
 while (XCHG(&l->guard, true));
 if (qempty(l->q)) l->lock=false;
 else unpark(qremove(l->q));
 l->guard = false;
}

(a) Why is guard used?

(b) Why okay to spin on guard?

(c) In release(), why not set lock=false when
unpark?

(d) Is there a race condition?

Race Condition

Thread 1
if (l->lock) {
 qadd(l->q, tid);
 l->guard = false;

 park(); // block

(in unlock)(in lock) Thread 2

while (TAS(&l->guard, true));
if (qempty(l->q)) // false!!
else unpark(qremove(l->q));
l->guard = false;

Block when Waiting: FINAL correct LOCK
typedef struct {
 bool lock = false;

 bool guard = false;

 queue_t q;

} LockT;

void acquire(LockT *l) {
 while (TAS(&l->guard, true));
 if (l->lock) {
 qadd(l->q, tid);
 setpark(); // notify of plan
 l->guard = false;
 park(); // unless unpark()
 } else {
 l->lock = true;
 l->guard = false;
 }
}
void release(LockT *l) {
 while (TAS(&l->guard, true));
 if (qempty(l->q)) l->lock=false;
 else unpark(qremove(l->q));
 l->guard = false;
}

setpark() fixes race condition

Spin-Waiting vs Blocking

Each approach is better under different circumstances
Uniprocessor

Waiting process is scheduled à Process holding lock isn’t
Waiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous implementation)

Multiprocessor
Waiting process is scheduled à Process holding lock might be
Spin or block depends on how long, t, before lock is released

Lock released quickly à Spin-wait (t << C)
Lock released slowly à Block (t >= C)
Quick and slow are relative to context-switch cost, C

NEXT STEPS

Midterm1 Today!

