
MEMORY: SWAPPING, MIDTERM 1 REVIEW

Shivaram Venkataraman
CS 537, Fall 2024

welcome back

ADMINISTRIVIA
Project 3 due today!

Code Review
Starting from Friday. Look for email from TA
10-15 mins meeting with TA
- Overall Code Structure
- Detailed explanation of a function in the solution
- Use of libraries within the solution
(including explanation of documentation on a used library call)

Rubric on Canvas (under Files à Uploaded Media)

-> new test cases

->
next week

MIDTERM 1 DETAILS

Oct 15th from 5.45pm to 7.15pm
Last name: A-K go to Van Vleck B102
Last name: L-Z go to Ingraham B10

Bring #2 Pencil, UW Student ID
One page cheat sheet (8.5x11 paper, two sided ok)
No calculator (we will give a table with powers of 2)

AGENDA / LEARNING OUTCOMES

Memory virtualization
How we support virtual mem larger than physical mem?
What are mechanisms and policies for this?

Midterm 1 Review

-

↳ CPU virtualization

Memory
virtualization

RECAP

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?

support apps where virtual memory 7

physical memory

-

PTE

n
-

-
> page

is on
dis

17
M M 1

in memory-

-

Trap into US

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

– if TLB hit, address translation is done; page in physical memory
Else TLB miss...

– Hardware or OS walk page tables
– If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

– Trap into OS (not handled by hardware)
– OS selects victim page in memory to replace

• Write victim page out to disk if modified (use dirty bit in PTE)
– OS reads referenced page from disk into memory
– Page table is updated, present bit is set
– Process continues execution

-

Page Replacement POLICIES
OPT: Replace page not used for longest time in future

– Advantages: Guaranteed to minimize number of page faults
– Disadvantages: Requires that OS predict the future; Not practical,

FIFO: Replace page that has been in memory the longest
– Advantages: Fair: All pages receive equal residency; Easy to implement
– Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
– Advantages: With locality, LRU approximates OPT
– Disadvantages:

• Harder to implement, must track which pages have been accessed
• Does not handle all workloads well

When do we

look ahead migrate
↳ Prefetch
(requential)

is
-Earliest in page

replaced

eviet

↳ least recently used

page

Page Replacement Comparison

Add more physical memory, what happens to performance?
LRU, OPT:
• Guaranteed to have fewer (or same number of) page faults
• Smaller memory sizes are guaranteed to contain a subset of larger memory sizes
• Stack property: smaller cache always subset of bigger

FIFO:
• Usually have fewer page faults
• Belady’s anomaly: May actually have more page faults!

ABC DABC

↑

-
Misses IBM I 73 ?< 3
3

&

= 3

-

Fifo Performance may Decrease!

Consider access stream: ABCDABEABCDE

Physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

~ ~ ~ 10 misses

-----------> *

DBD DDB B

A B C 4
. A BC

D

3 misses. d

mis D B C mils. E B
C D

9 misses miss . D A
C mils = A C D

missi D A B mils E A B D

miss E A B mils EA B C

miss E c B miss D A B C

miss EC D mil DE BC

Implementing LRU
Software Perfect LRU

– OS maintains ordered list of physical pages by reference time
– When page is referenced: Move page to front of list
– When need victim: Pick page at back of list
– Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
– Associate timestamp register with each page
– When page is referenced: Store system clock in register
– When need victim: Scan through registers to find oldest clock
– Trade-off: Fast on memory reference, slow on replacement (especially as size of

memory grows)

In practice
 LRU is an approximation anyway, so approximate more?

linked list
-

-

Clock Algorithm
Hardware

– Keep use (or reference) bit for each page frame
– When page is referenced: set use bit

Operating System
– Page replacement: Look for page with use bit cleared

(has not been referenced for awhile)
– Implementation:

• Keep pointer to last examined page frame
• Traverse pages in circular buffer
• Clear use bits as search
• Stop when find page with already cleared use bit, replace this page

1 use bit

17
o

B3O·
⑮S Those1

page

Teplacement

Clock: Look For a Page

0 1 2 3Physical Mem:

Use= Use= Use= Use=

clock hand

Use = 1,1,0,1 to begin

01 O

↓ X O IE
-

select page
2 for replacement

Page O is accesseds set its we bit
to 1

Clock Extensions

Replace multiple pages at once
– Intuition: Expensive to run replacement algorithm and to write single block to disk
– Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
– Intuition: More expensive to replace dirty pages
 Dirty pages must be written to disk, clean pages do not
– Replace pages that have use bit and dirty bit cleared

-

-

* which are not dirty

↳
modified in memory

MIDTERM 1 ReVIEW

PROCESS AND TIME SHARING

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

CPU

virtualization

-> Process

abstraction

share the CPU

HOW TO CREATE A PROCESS?

Unix-like OS use fork()
Fork() - Clones the calling process to create a child process
 Make copy of code, data, stack etc.
 Add new process to ready list
Exec(char *file): Replace current data and code with file

Advantages: Flexible, clean, simple
Disadvantages: Wasteful to perform copy and overwrite of memory

-

Y same memory
contents as

parent

SYSTEM CALL

RAM

Process P

sy
s_

re
ad

sy
sc

al
l

buf

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

user Rernel

J
interrupt system call

Operating System Hardware Program

Handle the trap
Call switch() routine
 save kernel regs(A) to proc-struct(A)
 restore kernel regs(B) from proc-struct(B)
 switch to k-stack(B)
 return-from-trap (into B)

Process A

Process B

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

time sharing
Y

-

2
choose a diff process

I

SCHEDULING METRICS, POLICIES

Turnaround time = completion_time - arrival_time
Response time = first_run_time - arrival_time

FIFO
Shortest Job First (SJF)
Shortest Time-to-Completion First (STCF)

Round Robin

Is not promptive

↳ interrupt existing job

↳ time pice

MULTI-lEVEL FEEDBACK QUEUE

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B Rules for MLFQ

Rule 1: If priority(A) > Priority(B)
 A runs

Rule 2: If priority(A) == Priority(B),
 A & B run in RR

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process.
 If not stay at level

Round robin interactive jobs
G4

batch jobs

I
↳ starvation

MORE MLFQ STARVATION

Rule 5: After some time
period S, move all the
jobs in the system
to the topmost queue.

Priority Boost!

Job could trick scheduler by doing
I/O just before time-slice end

Rule 4*: Once a job uses up its
time allotment at a given level
(regardless of how many times it
has given up the CPU), its priority
is reduced

PRACTICE QUESTIONS, SuRVEY

https://tinyurl.com/cs537-fa24-survey1

Given a FIFO scheduler, what is the turnaround time of job B?

Given a FIFO scheduler, what is the average turnaround time of the three jobs?

Given a SJF scheduler, what is the turnaround time of job C

Given a RR scheduler, what is the turnaround time of job B

-

-
- fie breaker

R

A

2 I
-·

AABABAC
-

↳ A

A.... A BBBCCCCC 12 - 2
= 18

O 9 10 11 12 17 finish arrival

- -

A = 9
B= 10 ~ 9+ 10 +11

=
IP

17-6 = 11 Arg -
C= 3

↳ not premptive ·A
11 - same

-
Et6

ABSTRACTION, GOALS

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code the code segment:
where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

Transparency: Process is unaware of sharing

Protection: Cannot corrupt OS or other process memory

Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

Dynamic Relocation MECHANISMS
Base Register
 Translate virtual addresses to physical by adding a fixed offset each time.
 Store offset in base register

Base+Bounds
 Idea: limit the address space with a bounds register
 Base register: smallest physical addr (or starting location)
 Bounds register: size of this process’s virtual address space

Disadvantages
– Each process must be allocated contiguously in physical memory
– No partial sharing: Cannot share parts of address space

> Protection

↑ virtual addrMae
check if

is less than

bound

SEGMENTATION
Process now specifies segment and offset within segment

How does process designate a particular segment?
Use part of logical address

Top bits of logical address select segment
Low bits of logical address select offset within segment

Segment Base Bounds R W
0 0x2000 0x6ff 1 0
1 0x0000 0x4ff 1 1
2 0x3000 0xfff 1 1
3 0x0000 0x000 0 0

14 bit logical address
4 segments

How many bits
for segment? 2

How many bits
for offset? 12

Segment
o

#

Segment
,Ef

-
Add the

- ofset
to

base

= ②

-

PAGING
How to translate logical address to physical address?

– High-order bits of address designate page number
– Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

No addition needed; just append bits correctly!

fixed size page

-

-Page Size

↑

-

PAGETABLES

Per-Process Linear page table

VPN
0

2^n

Additional memory reference to page table à
Page table must be stored in memory
MMU stores only base address of page
table

Storage for page tables may be substantial
Requires PTE for all pages in address
space
Entry needed even if page not allocated ?

⑭

=>

S
for

every
process

TLBS

Pages are great, but accessing page tables for every memory access is slow
Cache recent page translations à TLB

– MMU performs TLB lookup on every memory access
TLB performance depends strongly on workload

– Sequential workloads perform well
– Workloads with temporal locality can perform well

In different systems, hardware or OS handles TLB misses
TLBs increase cost of context switches

– Flush TLB on every context switch
– Add ASID to every TLB entry

-> lache VPN - ppn Mar
in

mappings

-

simple page
table

-

for hardware

managed TLB

Multilevel Page Tables
Creates multiple levels of
page tables

Only allocate page tables
for pages in use

Allow page table to be
allocated non-contiguously

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

-

Number
of

in

-

PTEs

- 1
physical

page page
live

↑

-

PRACTICE QUESTIONS

Page Table Entry 0

Page Table Entry 2

⑧ & VPN 6 - PPN3= - E
u

- -

↑

offert =
12 bit

-
-

- -

-

- VPN = 0
-

-> Cannot determine

-

-> VPN = 2

Ox1a

Page Table Entry 5

Page Table Entry 8

-> 8 valid virtual pages (0 to 7)
-

-

*

> Invalid

not a
valid upN

e
-

NEXT STEPS

Next class: New module on Concurrency!

