
Virtualization: CPU

Shivaram Venkataraman
CS 537, Fall 2024

Welcome back !

ADMINISTRIVIA

- Project 1 is out! Due on September 13th (Friday)
- Check handin directory

- Signup for Piazza https://piazza.com/wisc/fall2024/cs537
- Lecture notes at pages.cs.wisc.edu/~shivaram/cs537-fa24/
- Drop? Waitlist? Email enrollment@cs.wisc.edu and cc me

x
gitlab repository

-

- Test cases -> Discussion

AGENDA / OUTCOMES

Abstraction
What is a Process ? What is its lifecycle ?

Mechanism
How does process interact with the OS ?
How does the OS switch between processes ?

ABSTRACTION: PROCESS

PROGRAM VS PROCESS
#include <stdio.h>
#include <stdlib.h>
#include "common.h"

int main(int argc, char *argv[]) {
char *str = argv[1];

while (1) {
printf("%s\n", str);
Spin(1);

}
return 0;

}

Program

Process

-
oper. a saved on

dick

-

C

c + +

Java.

running
-

created when you
run the program

WHAT IS A PROCESS?

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movl $0, -4(%rbp)
movl %edi, -8(%rbp)
movq %rsi, -16(%rbp)
cmpl $2, -8(%rbp)
je LBB0_2

Instruction
Pointer

Registers
Memory addrs

Stream of executing instructions and their “context”

File descriptors

↳

↳ Stack

↳ heap

↳ opened

Process in xv6

-

- I
-
->
cu

PROCESS CREATION

code
static data
Program

CPU Memory

executes instructions

& ace

disk

>

variables
->

Const

-> cu
. c

PROCESS CREATION

code
static data
Program

CPU Memory

code, static data
heap

stack

Can run multiple
instances of same

program

Each program has its
own stack, heap etc.

EE Fleet

PROCESS VS THREAD

Threads: “Lightweight process”

 Execution streams that share an address space
 Can directly read / write memory

 Can have multiple threads within a single process

thread 1 thread 2

-

ht

SHARING THE CPU

SHARING CPU

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

Time sharing

E -one process
is

instructions exclusive
given

Pl P2 ↑3 to the
access

apr forafileen
P1 instructions time-

P2 instructions routine

TIME SHARING

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

TIME SHARING

code, static data
heap

stack

code, static data
heap

stack

code, static data
heap

stack

CPU

WHAT TO DO WITH PROCESSES
THAT ARE NOT RUNNING ?

OS Scheduler
 Save context when process is paused
 Restore context on resumption

[PU

Process PI

add $) 1 ,
eax

eit
--

-
↳ ↳LeaDProcess

-

DRAM
-

STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

few milliseconds
-

Process

CPU is created & main() E

executing
topen ("board,Ext")instructions -

- State
-

- 3

- ytopen()
not
considered- 7 7empctp3
for ↓ 0 10 20 ↳ runningscheduling why/ when P2

P2 ready

ASIDE: OSTEP HOMEWORKS!

- Optional homeworks corresponding to each chapter in book
- Little simulators to help you understand
- Can generate problems and solutions!

http://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

githel

PROCESS HW

Run ./process-run.py –l 2:100,2:0

QUIZ 1

≥ ./process-run.py -l 3:80,3:50

What happens at time 8?Each IO takes 5 time units,
3 CPU slices per process

https://tinyurl.com/cs537-fa24-quiz1a

-

A

-

-

-> Two Processes
>

↑

1

↑

8 RUN : CPU BLOCKED
-
-

CPU SHARING

Policy goals
 Virtualize CPU resource using processes
 Reschedule process for fairness? efficiency ?

Mechanism goals
 Efficiency: Sharing should not add overhead
 Control: OS should be able to intervene when required

Je next lecture

- low overhead

↓

safety

EFFICIENT EXECUTION

Simple answer !?: Direct Execution
 Allow user process to run directly
 Create process and transfer control to main()

Challenges
 What if the process wants to do something restricted ? Access disk ?
 What if the process runs forever ? Buggy ? Malicious ?

Solution: Limited Direct Execution (LDE)

are

-> program you

to run

trying

-

PROBLEM 1: RESTRICTED OPS

How can we ensure user process can’t harm others?

Solution: privilege levels supported by hardware (bit of status)
 User processes run in user mode (restricted mode)
 OS runs in kernel mode (not restricted)

How can process access devices?
 System calls (function call implemented by OS)

↑ Cou

- which memory
-

-

regions
-

topen which devices

etc.

-

SYSTEM CALL

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

P wants to call read()

kernel OS

mode
Y 8

11

↑
&

↓ Ore3f4
user

mode

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

P wants to call read() but no way to call it directly

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

sy
s_
re
adO

usermode ↳ Kernel
mode

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64

sy
s_
re
ad

all interrupts
handled by

Step 1 :

↑
are

OS

interrupt 61
Step 2

:

-write dow
-- - System

interrupt6 in EAX register all

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64

sy
s_
re
ad

s ↑ goesandPeraon

Il Il
interrupt -
handler

=

read systea

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64Syscall table
index

Trap table
index

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

movl $6, %eax; int $64

sy
sc
al
l

Follow entries to correct system call code

SYSTEM CALL

RAM

Process P

sy
s_
re
ad

sy
sc
al
l

buf

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

data from
die

-J

SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

Syscall: call kernel mode functions
 Transfer from user-mode to kernel-mode (trap)
 Return from kernel-mode to user-mode (return-from-trap)

- interrupt
o

QUIZ 2

To call SYS_read the instructions we used were

movl $6, %eax
int $64

To call SYS_exec what will be the instructions?

movl ____ %eax
int ____

https://tinyurl.com/cs537-fa24-quiz1b

$9
-

$64 -> system
call

-

handles

PROBLEM2: HOW TO TAKE CPU AWAY

Policy
 To decide which process to schedule when
 Decision-maker to optimize some workload performance metric

Mechanism
 To switch between processes
 Low-level code that implements the decision

Separation of policy and mechanism: Recurring theme in OS

DISPATCH MECHANISM

OS runs dispatch loop

while (1) {

 run process A for some time-slice
 stop process A and save its context
 load context of another process B
 }

Question 1: How does dispatcher gain control?
Question 2: What must be saved and restored?

-
-

-

&

HOW DOES DISPATCHER GET CONTROL?

Option 1: Cooperative Multi-tasking: Trust process to relinquish CPU through traps

– Examples: System call, page fault (access page not in main memory), or error
(illegal instruction or divide by zero)

– Provide special yield() system call

P1

yield() call

OS

P2

yield() return

-

--

- -

-

PROBLEMS WITH COOPERATIVE ?

Disadvantages: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine
Only solution: Reboot!

Not performed in modern operating systems

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking

Guarantee OS can obtain control periodically

Enter OS by enabling periodic alarm clock
 Hardware generates timer interrupt (CPU or separate chip) Example: Every 10ms
 User must not be able to mask timer interrupt

->
times interrupt

- every 10 ms

Process A
Operating System Hardware Program

timer interrupt
Kernel

saves wegs (A)
to

stack

Trap handler jumps
to interrupt handler

Schedulers) -
select -

nextProcess
User

Save Revie regs
(A) Proc struct

restores kernel wegs (B) I↓
switch K-stack (B) ↳

↳
Process B

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Process A
Operating System Hardware Program

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System Hardware Program
Process A

Handle the trap
Call switch() routine
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

Operating System Hardware Program

Handle the trap
Call switch() routine
 save kernel regs(A) to proc-struct(A)
 restore kernel regs(B) from proc-struct(B)
 switch to k-stack(B)
 return-from-trap (into B)

Process A

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Handle the trap
Call switch() routine
 save kernel regs(A) to proc-struct(A)
 restore kernel regs(B) from proc-struct(B)
 switch to k-stack(B)
 return-from-trap (into B)

Process A

Process B

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

SUMMARY

Process: Abstraction to virtualize CPU
Use time-sharing in OS to switch between processes

Key aspects
 Use system calls to run access devices etc. from user mode
 Context-switch using interrupts for multi-tasking

POLICY ?
Next CLASS!

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

NEXT STEPS

Project 1: Due Friday, Sept 13th
Project 2: Out Friday, Sept 13th

Waitlist? Email enrollment@cs.wisc and cc me (will finalize by Thursday)

