We/(cmfw@ back !

VIRTUALIZATION: CPU

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

ocklal Tep Ty

Project | is out! Due on September | 3t (Friday)
~ Check handin directory

- Tt s — DM omgpom
Signup for Piazza https://piazza.com/wisc/fall2024/cs537

Lecture notes at pages.cs.wisc.edu/~shivaram/cs537-fa24/

Drop? Waitlist! Email enrollment@cs.wisc.edu and cc me
P

AGENDA / OUTCOMES

Abstraction
What is a Process ? What is its lifecycle ?

Mechanism
How does process interact with the OS ?

How does the OS switch between processes ?

ABSTRACTION: PROGESS

PROGRAM VS PROGESS

Cor - C .
#include <stdio.h> /7)V /gowu} B M
#include <stdlib.h>

#include "common.h" —_— PI’ ram
o8
int main(int argc, char *argv[]) { CZ+
char *str = argv[1]; c+
Jova .
while (1) {
printf("%s\n", str); N
Spin(1); /\j/ «— Process
}
return 0; CﬂﬁKtlJ Whin 3”“‘

} o fo PVO;?ﬂmﬂ

WHAT IS A PROCESS?

Stream of executing instructions and their “context”

Instruction pushqg %rbp
Pointer L —— |movq %rsp, %rbp
subq $32, %rsp

movl $0, -4(%rbp) Registers
mov1l %edi, -8(%rbp) Memory addrs
movq %rsi, -16(%rbp) L; pack-
cmpl $2, -8(%rbp) L Lok
Je LBBO_2 File descriptors

L, @p@nw(

PROCESS IN XV6

// Per-process state
struct proc {

- C/ -
uint isz; // Size of process memory (bytes)
pde_tx pgdir; // Page table
char xkstack; // Bottom of kernel stack for this proces struct context {
enum procstate state; // Process state . .

- - vint edi;
int pid; // Process ID Nt .
struct proc *parent; // Parent process U%n esi;
struct trapframe *tf; // Trap frame for current syscall U?nt ebx;
struct context *context; // swtch() here to run process uint ebp;/
void *chan; // If non-zero, sleeping on chan uint eip;
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

{2+ -, C\’U

PROCESS CREATION

CPU Memory

reults ks Aema Meack

bap

PROCESS CREATION

co Memory ___
— — icode, static data
\: \: heap i :

Can run multiple

instances of same
program

PROCESS VS THREAD

Threads: “Lightweight process” X X

Execution streams that share an address space //// > haap

Can directly read / write memory

Can have multiple threads within a single process

SHARING THE CPU

\code,static data !
i heap }:M,{‘wbﬁ%E
'stack vy
h |

SHARING CPU

\code, static data
heap

\code, static data
heap

stack e

ya
)
(v

0 10 b

ore oY “

2;«% Q%U{’Wy:‘/ﬁ

ACCeAS
eV M

e A}A"W{;%

TIME SHARING

e e e ——— e ————— ——— o —————

:code, static data: i i i
heap i | I I i i I I
stack | i

TIME SHARING

\code, static data: |
‘heap i | I I
'stack |

"""""

&Y

WHAT TO DO WITH PROCESSES ™ *

THAT ARE NOTRUNNING 2., . =+~
OS Scheduler %;(Z%a: é:c

Save context when process is paused

pe—

Restore context on resumption Dk M

STATE TRANSITIONS ... et

Prolers T
(AU traated wann () ¢
Lﬂ’wﬁj Descheduled Lobon (" ,{,omJ-/i?(f)
f YWC/L’LW
e Ready
Scheduled
1/0O: |n|t|ate I/O done
MQM ()

m@“ U/ s Blocked P" ?L
M? g [15 D SR PR

ASIDE: OSTEP HOMEWORKS!

- Optional homeworks corresponding to each chapter in book

Little simulators to help you understand

Can generate problems and solutions!

http://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

%;%M

PROCESS HW

Run ./process-run.py —| 2:100,2:0

0

https://tinyurl.com/cs537-fa24-quizla

2 ./process-run.py -l 3:80,3:50

Time PID: 6 PID: 1 CPU 1I0s
1 RUN:io READY 1
2 BLOCKED RUN: cpu 1 1
3 BLOCKED RUN:io 1 1
4 BLOCKED BLOCKED 22— Two o
5 BLOCKED BLOCKED 2
6 BLOCKED BLOCKED - 2
7% RUN:io_done BLOCKED - 1 1
¢ Run ;. CPU BlLoCkeD .

Each 10 takes 5 time units, ~~—_ What happens at time 8!

3 CPU slices per process

CPU SHARING

Policy goals wod ledore
Virtualize CPU resource using processes /°
Reschedule process for fairness? efficiency ?

Mechanism goals — [ow overhead

Efficiency: Sharing should not add overhead

Control: OS should be able to intervene when required

L
Saely

EFFICIENT EXECUTION

Simple answer !2: Direct Execution

Allow user process to run directly .
AT
4)'(0?5“/@—71/\ LJONA

. (‘—,a Yw)
Y

Create process and transfer control to main() —

Challenges

What if the process wants to do something restricted ? Access disk ?

What if the process runs forever ? Buggy ? Malicious ?

Solution: Limited Direct Execution (LDE)

PROBLEM 1: RESTRICTED OPS

How can we ensure user process can’t harm others?
CPY
Solution: privilege levels supported by hardware (bit of status)

) W\ny
User processes run in user mode (restricted mode) — s /
(¢
OS runs in kernel mode (not restricted) T y
- . o) (24
,FOFQ/V\ U/L"(/L\
How can process access devices!? ote.

System calls (function call implemented by OS)

SYSTEM CALL

SYSTEM CALL

Process P Jw“ﬁq :
% N\ -

ead IS

sys_r

3 RAM 050_349

ubeY

de
o P wants to call read()

SYSTEM CALL

Process P

/ N

AAEY w0 <
e RAM

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

P wants to call read() but no way to call it directly

SYSTEM CALL

Process P P Lo e by

S/ \ 0

T movl 56, %Seax; int $64

[i AR «e?'ﬂ/m/ o ferndt

SYSTEM CALL

o oA P

Process P
& cud P

4

SYSTEM CALL

Process P
/

RAM

Al . movl 56, %eax; int $64 — AN
index index

SYSTEM CALL

Process P
——A\

RAM

movl $6, %eax; int $64

Follow entries to correct system call code

SYSTEM CALL

Process P
——A \

RAM

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

SYSCALL SUMMMARY

Separate user-mode from kernel mode for security

Syscall: call kernel mode functions / D\’C@“W“ff .
Transfer from user-mode to kernel-mode (trap)

Return from kernel-mode to user-mode (return-from-trap)

OUIZ 2 E."- - E https://tinyurl.com/cs537-fa24-quizlb

// System call numbers

k #define SYS_fork 1
E -.ﬂ #define SYS exit 2
#define SYS wait 3
To call SYS read the instructions we used were -

#define SYS pipe 4
movl $6, %eax #define SYS write 5
int $64 #define SYS_read 6
. . . #define SYS_close 7

To call SYS exec what will be the instructions? . .
- #define SYS kill 8
movl §9 %eax #define SYS_exec 9
int Joh _ syfem &/M #define SYS_ open 10

o

PROBLEMZ2: HOW TO TAKE GPU AWAY

Policy
To decide which process to schedule when

Decision-maker to optimize some workload performance metric
Mechanism
To switch between processes

Low-level code that implements the decision

Separation of policy and mechanism: Recurring theme in OS

DISPATGH MECHANISM

OS runs dispatch loop

while (1) {
run process A for some time-slice
—— stop process A and save its context

load context of another process B
it LU

} -

Question |: How does dispatcher gain control?
Question 2: What must be saved and restored?

HOW DOES DISPATCHER GET CONTROL?

Option |: Cooperative Multi-tasking: Trust process to relinquish CPU through traps

Examples: System call, page fault (access page not in main memory), or error
(illegal instruction or divide by zero)

— Provide special yield () system call

“

yield() call

yield() return
-

PROBLEMS WITH COOPERATIVE ?

Disadvantages: Processes can misbehave

By avoiding all traps and performing no I/O, can take over entire machine

Only solution: Reboot!

Not performed in modern operating systems

TIMER-BASED INTERRUPTS

Option 2: Timer-based Multi-tasking

e

Guarantee OS can obtain control periodically é/‘/wy 10 M4

S~

Enter OS by enabling periodic alarm clock
Hardware generates timer interrupt (CPU or separate chip) Example: Every 10ms

User must not be able to mask timer interrupt

Operating System Hardware Program

Process A
KWV L\/\/‘f(ifvmf»f/
fowes 7Y (p) o kevoed
Moack.
] o eter ,
//fm& /\Mue»/ /&W% n W AOM[IZ
Sobedsder() :Z(:rk frocets e e
Aawve)ZQYM/(" (A) PyoC Shrnckt ZQU}Q'Y /1/
M ¢ hordl v (8) Y e .
S stock () o] A LeveA B

J f?ww B

Operating System

Hardware Program

Process A

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System

Handle the trap

Call switch() routine

save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)

return-from-trap (into B)

Hardware

timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Program
Process A

Operating System Hardware Program

Process A

timer interrupt
save regs(A) to k-stack(A)

Handle the trap move to kernel mode
Call switch() routine jump to trap handler
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Process A

timer interrupt
save regs(A) to k-stack(A)

Handle the trap move to kernel mode
Call switch() routine jump to trap handler
save kernel regs(A) to proc-struct(A)
restore kernel regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Process B

SUMMARY

Process: Abstraction to virtualize CPU

Use time-sharing in OS to switch between processes

Key aspects
Use system calls to run access devices etc. from user mode

Context-switch using interrupts for multi-tasking

POLICY ?
NEXT CLASS!

NEXT STEPS

Project |: Due Friday, Sept |3th
Project 2: Out Friday, Sept |3th

Waitlist? Email enrollment@cs.wisc and cc me (will finalize by Thursday)

