
PERSISTENCE: SOLID-STATE DEVICES

Vojtech Aschenbrenner
(Instead of Shivaram Venkataraman)

CS 537, Fall 2024

ANNOUNCEMENT #1

Project 6 is out!

Deadline 1: Nov 27th, no slip days applicable
Deadline 2: Dec 6th, slip days applicable

Just 6 days left (6*24*2/3 = 96 hours)!!

START TODAY!

ANNOUNCEMENT #2

Overcrowded office-hours sessions?
Sounds like a bad scheduler!
What is the solution?
How to make it worse?
How to make it better?

AGENDA / LEARNING OUTCOMES

SSD

RECAP

LFS Strategy

File system buffers writes in main memory until “enough” data
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk
Never overwrite old info: old copies left behind

READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

SEGMENT SUMMARY

(N, T) = SegmentSummary[X];

inode = Read(imap[N]);

if (inode[T] == X)
 // block D is alive
else
 // block D is garbage

Is an inode the latest version?
Check imap to see if this inode is pointed to
Fast!

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s) Or?

Upon recovery:
 - read checkpoint to find most imap pointers and segment tail
 - find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

QUIZ 19

https://tinyurl.com/cs537-fa24-q19

LFS VS FFS

Until ... SSDs enter the picture

SSDS

NAND FLASH
Single Level Cell (SLC) = 1 bit per cell

Multi Level Cell (MLC) = 2 bits per cell

Triple Level Cell (TLC) = 3 bits per cell

Quad Level Cell (QLC) = 4 bits per cell

(Penta Level Cell (PLC) = 5 bits per cell)

SSD STRUCTURE
What does it remind to you?

Massively
Parallel
-
New
Interface
(NVMe)
-
Extensible

SSD PROPERTIES
Page ~ 4KB,
Block ~ 128 KB
 or 256 KB

Read

Write

Failures: Block likely to fail after a certain number of P/E cycles
(~10,000 for MLC flash, ~100,000 for SLC flash)

SSD OPERATIONS
Read a page: Retrieve contents of entire page (e.g., 4 KB)

– Cost: 25 (SLC), 50 (MLC), 75 (TLC) microseconds
– Independent of page number, prior request offsets

Erase a block: Resets each page in the block to all 1s
– Cost: 1.5 (SLC), 3 (MLC). 4.5 (TLC) milliseconds
– Much more expensive than reading!
– Allows each page to be written

Program (i.e., write) a page: Change selected 1s to 0s
– Cost is 250 (SLC), 750 (MLC), 1100 (TLC) microseconds
– Faster than erasing a block, but slower than reading a page

FLASH TRANSLATION LAYER
1. Translate reads/writes to logical blocks into reads/erases/programs on physical blocks

2. Reduce write amplification (extra copying needed to deal with block-level erases)

3.Implement wear leveling (distribute writes equally to all blocks)

Typically implemented in hardware in the SSD, but in software for ZNS SSDs (interface?)

FTL: DIRECT MAPPING

Cons?

FTL: LOG-BASED MAPPING
Idea: Treat the physical blocks like a log

FTL: LOG-STRUCTURED ADVANTAGES
Avoids expensive read-modify-write behavior

Better wear levelling: writes get spread across pages,
even if there is spatial locality in writes at logical level

Challenges? Garbage!

GARBAGE COLLECTION

GARBAGE COLLECTION
Steps:

Read all pages in
physical block

Write out the alive
entries to the end of
the log

Erase block (freeing it
for later use)

How does SSD know
about rm?

OVERHEADS

Garbage collection requires extra read+write traffic

Overprovisioning makes GC less painful
 – SSD exposes logical space that is smaller than the physical space

 – By keeping extra, “hidden” pages around, the SSD tries to defer GC to a
 background task (thus removing GC from critical path of a write)

Occasionally shuffle live (i.e., non-garbage) blocks that never get overwritten
 – Enforces wear levelling

INTERFACE CHANGES

Complex software in SSD firmware requiring powerful CPU and RAM

~50% of the SSD price is not related to storage medium (NAND chips)

TRIM: Mark region on SSD as unused. Used by FS in every OS today after ____?

ZNS (Zoned Namespace) SSDs: Big Sequential writes only. Why is it better?

OVERALL PERFORMANCE

Samsung 990 Pro (PCIe 4, 30us) 2,277 1,855 3,190 4,857
Crucial T705 (PCIe 5, 30us) 2,374 1,836 7,702 8,576

DDR5-4800 2x32GB (80ns) Read: 74,518 Write: 71,872

COST?
Not just about the drive price!

Power, Reliability, Physical Space, Cooling…

SSDs allow massive NAND arrays with a
single FTL. Makes it extremely cheap.

HDDs cannot be modified to have for example
multiple spindles with just single head etc.

Pure Storage provides only NAND-based storage
solutions today.

NEXT STEPS

Next class: Distributed Systems!

