f/\jé/(&jvv% back ’

MEMORY VIRTUALIZATION

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

- Project 2 is due Sept 24t Tuesday

- Project | grading in progress (soon?)

- Midterm|: Oct |5 at 5.45pm

- Conflict form — fyq2a

AGENDA / LEARNING OUTCOMES

Memory virtualization
What are main techniques to virtualize memory!?

What are their benefits and shortcomings?

RECAP

MEMORY VIRTUALIZATION

Transparency: Process is unaware of sharing
Protection: Cannot corrupt OS or other process memory
Efficiency: Do not waste memory or slow down processes

Sharing: Enable sharing between cooperating processes

OKB

1KB

2KB

15KB

16KB

RECAP: WHAT IS IN ADDRESS SPAGE?

Program Code

Heap

(free)

Stack

the code segment:
where instructions live

the heap segment:
contains malloc’d data
dynamic data structures

(it grows downward)

(it grows upward)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

Static: Code and some global variables

Dynamic: Stack and Heap

HOW TO VIRTUALIZE MEMORY

Problem: How to run multiple processes simultaneously?
Addresses are “hardcoded” into process binaries —

How to avoid collisions?

Possible Solutions for Mechanisms: "
|. Time Sharing
2. Static Relocation
3. Base

4. PBase+Bounds

Memory

code

data M*@

Program 7 lpo? g

o e 7

(orker X

1) TIME SHARING MEMORY L

L) Yoo ¢y0 s
st 5 ok

2) STATIC: LAYOUT IN MEMORY

. Pl addvers = 4 kB
s _ W
4KB

0x1010: movl 0x8(%rbp), %edi

Program Code 0Xx1013: addl $0x3, %edi
I Heap 0x1019: movl %edi, 0x8(%rbp)
process
free) \) Q\AAA/\S, \UOD
tack

. 8 KB
9?’”9)@ C}/ﬁg(\

. LY

0x3010:movl Ox8(%rbp), %edi

12K8 Program Code 0x3013:addl $0x3, %edi
process 2 Heap 0x3019:movl %edi, Ox8(%rbp)
free)

tack
K

3) DYNAMIC RELOCATION

Goal: Protect processes from one another -~
Requires hardware support
— Memory Management Unit (MMU)

MMU dynamically changes process address at every memory reference
— Process generates logical or virtual addresses (in their address space)

— Memory hardware uses physical or real addresses

O% | (0D
. Process runs here IOS can control MMQ
)L ,JJWQWA H\W il o r
CPU ‘ I MMU
D+\°O I Ox 1000 Memory
/ Logical address Physical address

HARDWARE SUPPORT FOR DYNAMIC RELOCATION

Privileged (protected, kernel) mode: OS runs
— When enter OS (trap, system calls, interrupts, exceptions)
— Allows certain instructions to be executed \ Lot Wb} J
. Ju\)ﬁ‘(‘" R WJ gl
(Can manipulate contents of MMU) Y S lee

— Allows OS to access all of physical memory

User mode: User processes run

— Perform translation of logical address to physical address

\AM\M{) fhe MMU

IMPLEMENTATION OF DYNAMIC RELOCATION: BASE REG

Translation on every memory access of user process

MMU adds base register to logical address to form physical address

MMU ., Cow he J»MZJ Aﬂww‘cﬂ%

physical /PW ka

address
«WWWZ

logical
address

DYNAMIC RELOCATION WITH BASE REGISTER

Translate virtual addresses to physical by adding a fixed offset each time.

Store offset in base register

Each process has different value in base register

Dynamic relocation by changing value of base register!

Base Register for P| = 2048

Base Register for P2 = 3072

—_—

Virtual Physical Joed
Pl: load I_(@ Jokg + Jo = 2058
(¢ Pl:load 200, RI 2ot q #1200
l S;JAD P2:Ioad§EO,RI 30942 +500 = 2692
VISUAL EXAMPLE OF
DYNAMIC RELOCATION:

BASE REGISTER

base L
- 024

pL
409

0 KB

| KB

2 KB

3 KB

4 KB 7=~ -
P2 &«

5 KB

6 KB

Virtual

— Pl:load 100,R1

P2: load 100, R |
P2:load 1000, R |
Pl:load 100)RI
Pl:store 3072, R

- Can Pl hurt P2?

Physical

load | 124, R
load 4196, R
load 5196, R
load 2024, R |

lo2g + 3042

- 406%

4) DYNAMIC WITH BASE+BOUNDS

|dea: limit the address space with a bounds register

Base register: smallest physical addr (or starting location)

Bounds register: size of this process’s virtual address space

— Sometimes defined as largest physical address (base + size)

pem e —

/7

— OS kills process if process loads/stores beyond bounds L are @”"‘f”\yf
by OS5
bo wnds)

MMU
bose,

IMPLEMENTATION OF BASE+BOUNDS

Translation on every memory access of user process
* MMU compares logical address to bounds register
if logical address is greater, then generate error
* MMU adds base register to logical address to form physical address

LMB
&/ OF.F Af/(/-
< LMB
logical physical
address address

MANAGING PROCESSES WITH BASE AND BOUNDS

Context-switch: Add base and bounds registers to proc struct
N5 Steps
— Change to privileged mode
— Save base and bounds registers of old process rFY"W‘ M MY

— Load base and bounds registers of new process | MmU

— Change to user mode and jump to new process

Protection requirement
* User process cannot change base and bounds registers
* User process cannot change to privileged mode M"f Nf?""“/

BASE AND BOUNDS

Advantages
Provides protection (both read and write) across address spaces
Supports dynamic relocation
Can place process at different locations initially and move address spaces

Simple, inexpensive implementation: Few registers, little logic in MMU

Disadvantages
Each process must be W in physical memory b @Cgoio,ﬂp
Must allocate memory that may not be used by process
No partial sharing: Cannot share parts of address space 5)%“”'“’\2

0U|Z 4 https://tinyurl.com/cs537-fa24-q4

unsigned long A = 3; —
/ﬁ int main(int argc, char *argv[]) {
intB=7;—
short *P = malloc|(5 * sizeof(short));

T j L

? Male. 0 Mack f[gj

sk ke | G

O.UIZ 4 https://tinyurl.com/cs537-fa24-q4

Address space size IK —— max w\wwfg 0 KB
Physical memory of size 16K pyocens | KB
Base: 0x00003cb5 (decimal 15541) 2KB
Limit: 492 3 KB

4 KB

Jorboal a4z < 11T

—

o o b 16 KB

csul # 422 - 15174

va = AB X

i 0) SEGMENTATION

Divide address space into logical segments

(AIE(,)PO

— Each segment corresponds to logical entity in address space

(code, stack, heap) 0
e
— ode
Each segment has separate base + bounds register I
- , Foamous — Heap
Coske /S%W%/(bate by = by ¥
Hop agment” t
pre e 7

2"-|

SEGMENTED ADDRESSING

009
1000 oood 0000 O

Process now specifies segment and offset within segment S R
>PELITIES ST
How does process designate a particular segment!? A%MWC O%M
WS\ th

— Use part of logical address (V;y(mﬂ MMVW) oAb
* Top bits of logical address select segment MM
* Low bits of logical address select offset within segment r

What if small address space, not enough bits?
— Implicitly by type of memory reference

— Special registers

SEGMENTATION IMPLEMENTATION

MMU contains Me (per process)
* Each segment has own base and bounds, protection bits
« Example: 14 bit logical address, 4 segments; — Nty

LOgl(Lk) - 2 p)\& J@ /;g/t{c,{/ /Q%W\M . QQ{N’MM

~

How many bits

Segment |Base Bounds |R W
for segment? 0 . 0x2000 |0x6ff |1 0 remember:
2 1 050000 loxaff 1 1 | hex digit = 4 bits
How many bits |2 - 0x3000 |Oxfff 11
for offset! 3 0x0000 |0x000 |0 O

g = 12
it

VISUAL INTERPRETATION

0x00 \& AE Virtual (hex) Physical
244 1oad 0x2010, R Iack egre
0x400 . J\;F’ ng“
\ 0
heap (seg1) s, \2 ik O \boo 40010
0x800 o
load 0x1010, R . Ox
0x 1200 ol
Oxuoo 4+ 0010
0x 1600 |
stack (seg2) load 0x1100, R - 0410
+ 0109
0x2400 O?L L[0O

Segment numbers:
0: codet+data
l:heap ——
2: stack

0x00

0x400

0x800

0x1200

0x1600
stack (seg?2)
0x2000

0x2400

Segment numbers:

0: code+data
|: heap
2: stack

heap (seg1)

Virtual Physical

load 02010, R 1 0x1600 + 0x010 = 0x1610
load 0x1010, R 0x400 + 0x010 = 0x410
load 0x 1100, R 0x400 + 0x 100 = 0x500

HOW DOES THIS LOOK IN X86

Stack Segment (SS): Pointer to the stack
Code Segment (CS): Pointer to the code
Data Segment (DS): Pointer to the data

Extra Segment (ES): Pointer to extra data
F Segment (FS): Pointer to more extra data

G Segment (GS): Pointer to still more extra data

OKB
1KB

2KB

| 2. #6KB

16KB

NOTE: HOW DO STACKS GROW? =

Program Code

Heap

(free)

Stack= 4 K

Py

bamne jL? 8
Tﬂﬂzih/@’ —)
Stack goes 16K = 12K, in physical memory is 28K = 24K
Segment base is at 28K
) Mhack”
Virtual addyess 0x3C00 = 15K
—> top 2 bits (0x3) segment ref, offset is 0xCO00 =@

-—

How do we make CPU translate that ?

Negative offset = subtract max segment from offset

=3K-4K =-1K . jéow‘ o By
Add to base =28K — IK = 27K /E%MM i

ADVANTAGES OF SEGMENTATION

0,01¢
| : Me
Enables sparse allocation of address space ireane aiee %
Stack and heap can grow independently / !

* Heap: If no data on free list, dynamic memory allocator requests more from OS
(e.g., UNIX: malloc calls sbrk())

» Stack: OS recognizes reference outside legal segment, extends stack implicitly
\NM — 1, W
Different protection for different segments B o
@ — /Ur“v

* Enables sharing|of selected segments k P e -

* Read-only status for code . P
| et

Supports dynamic relocation of each segment ’W\MQ e

pre 7 =

DISADVANTAGES OF SEGMENTATION

Not Compacted

OKB
Each segment must be allocated contiguously

8KB Operating System

May not have sufficient physical memory for large segments? 1eks
%V«} (not in use)

24KB
External Fragmentation Allocated
32KB :
| l< (not in use)
40KB Allocated

L4 LB in oL bt]

: ' 48KB 2 (not in use)
VW% / V‘/VOV) "2 ‘

= “477“2 56KB
éay/ Allocated
over h 64KB

NEXT STEPS

Project 2: Due soon!

Next class: Paging, TLBs and more!

