
MEMORY: SMALLER PAGE TABLES AND SWAPPING

Shivaram Venkataraman
CS 537, Fall 2024

welcome back !

ADMINISTRIVIA
Project 3 is due next week
Code review

Midterm 1:
Practice exams on Canvas
Review session in class

~ 10-15 min. Post Piazza

Out 19th

AGENDA / LEARNING OUTCOMES

Memory virtualization
What are the challenges with paging ?
How we go about addressing them?

How we support virtual mem larger than physical mem?
What are mechanisms and policies for this?

Size of Page

table

RECAP

PROS/CONS of Paging

Pros
No external fragmentation

– Any page can be placed in any
frame in physical memory

Fast to allocate and free
– Alloc: No searching for suitable

free space
– Free: Doesn’t have to coalesce

with adjacent free space

Cons
Additional memory reference

- MMU stores only base address of
page table

Storage for page tables may be substantial
- Simple page table: Requires PTE for
all pages in address space
- Entry needed even if page not
allocated ?

Page
Table

↑ mapping
VPN- PPN

for every
process

TLB Summary

Pages are great, but accessing page tables for every memory access is slow
Cache recent page translations à TLB

– MMU performs TLB lookup on every memory access

TLB performance depends strongly on workload

TLBs increase cost of context switches
– Flush TLB on every context switch
– Add ASID to every TLB entry

In different systems, hardware or OS handles TLB misses

-> Mmu

↳ hit then directly access the physical
page

the

- --
multiple processes

share

TLB

tables
↳ know layout of page

WHY ARE PAGE TABLES LARGE?

PFN valid prot

10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid…how to avoid
storing these?

Linear Page Tables

virtual page
-> every

& N
virtual pages

H bytes

size= 4 * N

Multilevel Page Tables

Creates multiple levels of
page tables

Only allocate page tables
for pages in use

Allow page table to be
allocated non-contiguously

wasting
2 pages 3 pages

in

&
this 2-level

page table

~
&

↑ -
9

- -&
/

↑

-L
Pointers to

M ↑

innew page-
-

↑ tables -

-
4 pages

to store Additional
page Table memory reference

Multilevel Translation EXAMPLE
PPN

0x3
-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
 -
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0x01ABC

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

- - -

-
-

--- -

-

offset = ABC

outer =
0
-

inner
I 1
-

0x23 =

Per

PA = 0x23
ABC

↑
fite in a page ↑

4kB pages

- -
-

MORE THAN 2 levels?
Problem: page directories (outer level) may not fit in a page

Solution:
– Split page directories into pieces
– Use another page dir to refer to the page dir pieces.

PT idx OFFSETPD idx 1
VPN

PD idx 0

How large is virtual address space with 4 KB pages, 4 byte PTEs,
(each page table fits in page)

4KB / 4 bytes à 1K entries per level

1 level:
2 levels:

outer page? (__ bits) inner page (10 bits) page offset (12 bits)
64-bit address:

2

42

entries O bit et page
T 1024

=> 10 bits&
42

- ->
4kB pages

- -

3) hits 10 bite 10 bit 12 Bite

virtual

1024 entries page table x 4K page = 4 MB + addres space

- 1024 x 1024 x 41 = 4GB - virtual
addr space

Example: x86-64
Virtual address: 48 bits
 – Upper 16 bits are sign extended (all 0, all 1)
Physical address: 48 bits

PTE size = 48 bits + metadata = 8 bytes
PTEs/4kb page = 512 = 9bits

-> 64 bit mode

-

-

-

#ooood48 bits

-

- PE :
-

=

↑
↑

↑ &

-
- ↳ 4 kB pages

-

4 levels in our page table ↳ 512 entries
in a 4kB page

On TLB miss: lookups with more levels more expensive
Assume 3-level page table
Assume 256-byte pages
Assume 16-bit addresses
Assume ASID of current process is 211

How many physical accesses for each instruction? (Ignore ops changing TLB)

(a) 0xAA10: addl $0x5, %edh

(b) 0xBB13: addl $0x3, %edi

ASID VPN PFN Valid

211 0xbb 0x91 1
211 0xff 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

FULL SYSTEM WITH TLBS

-

⑳
T

-

-

L ↑ 4
--
#

fetch instruction. No entry OxAA in 72B .
TLB mis

↳ I

3 men accesses to get
translation . I men

acces

I PA = 0x9113

I men access for instr fetch

Inverted Page TAble
Only store entries for virtual pages w/ valid physical mappings

Naïve approach:
Search through data structure <ppn, vpn+asid> to find match

 Too much time to search entire table

- inverted
PPN- VPN + ASID

·E-

--

I-

Inverted Page TAble
Better:

 Find possible matches entries by hashing vpn+asid
 Use chaining to handle collisions
 Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

Used in IBM POWER and Intel Itanium, but complicated

reduce size minimum↑
of page table required ↑

8 bits

-

needs to

I be done by
OS

Tos
handles

more

TLB misses

expensive

QUIZ 7 https://tinyurl.com/cs537-fa24-q7

What problem(s) can be solved by using ASIDs ?

For a hardware-managed TLB miss, which of the following statements are true?

For a software-managed TLB miss, which of the following statements are true?

-> TLB flushed across context switches

-> Hw knows page tables are located

os plays no role

-> Hw privelege level - berrel mode from

user
mode

OS computes new entry

16-bit address space and 4kB page size.
Assume the page table is at 0x2000
Each PTE is of 4 bytes. No TLB

0x 200C first access
mem

- 0x 9000 second
- ↳ load -- ↑

Inste 1 :
-

2 mem
access

instr fetch I ↑

access load
- -

↓

2 mem - -

- -

= 4 E --
-

fastr 2 =
2 + 2

= 4
18 ? ↑

Fast 3 =
2 + 0 =

2

Int 4 =
2 + 2 = 4

F 5 =
2 + 2 = 4

16-bit address space and 4kB page size.
Assume the page table is at 0x2000
Each PTE is of 4 bytes. With 5 entry TLB

TLB

-> Ox 3 ->
0x9

OXS >
O+ 8

-

0x 4 -> Ox7

Ine1 : 2 + 2

= 4 - -

- -

Inst 2 : TLB hit &

-

1 + 2
=

12 ↑

- -

-

Inst 3 : 1

: 1
+ 1 =

2

Fast
4

Tnt - :
1 + 1 =

2

EFFECT OF PAGE SIZE

int sum = 0;
int a[1024*1024];
for (i=0; i<1024*1024; i++) {

sum += a[rand() %
 (1024*1024)];
}

Miss rate of TLB: # TLB misses / # TLB lookups

TLB lookups? number of accesses to a =

Chance of a TLB miss?
 =

Assume 2MB pages
32 TLB entries

Assume 4KB pages
32 TLB entries

TLB lookups? number of accesses to a =

Chance of a TLB miss?
 =

1024 pages
page- 32 entries

32 entries

=
1024 integers

-

randomly accessing
- Im lookups

-
~IM integers 1 - 32/1024
- size of This

TLB hit - 32 I -
- -

number of pages
1024

~500K integers
?

-- pages 2
misses for atreeterminfor array a loop TLB

LARGE PAGES (HUGE PAGES)
TLB reach: how much memory can be accessed without a TLB miss?

1000 entries 4KB pages à 4MB

Large pages
1000 entries, 2MB pages à 2GB!

How to use?
• Programmer requested: mmap(MAP_HUGE) returns huge pages
• Transparent Huge Pages (THP, in Linux)

– OS uses huge pages when available for > 2MB allocations

> onlyus
e

bytes

J 2 MBI

-

-
--

internal
↳ fragmentation

-

-

- -

↳ 2MB pages for your

allocation

TRANSLATING LARGE PAGES
HugePages saves TLB entries. But how does it affect page translation?

4KB pages: 4 levels à 4 memory accesses

2MB pages:

Page Map Lvl 4
(bits) page offset (bits)Page Pointer Dir.

(bits)
Page Directory

(bits)

x 86 - 64

= 48 bits

Virtual addr

-

3 level -> 3 men access for address translation

21
9 9 9

SHARING with PAGE TABLES
-

code pages

same physical- gread memory page

O

Iwrite

&
-

&

F
read fromdared hik marat

library

Summary: Better PAGE TABLES

Problem: Simple linear page tables require too much contiguous memory

Many options for efficiently organizing page tables
If OS traps on TLB miss, OS can use any data structure
– Inverted page tables (hashing)

If Hardware handles TLB miss, page tables must follow specific format
– Multi-level page tables used in x86 architecture
– Each page table fits within a page

Large pages can reduce TLB use and number of accesses for translation
.

SWAPPING

Motivation
OS goal: Support processes when not enough physical memory

– Single process with very large address space
– Multiple processes with combined address spaces

User code should be independent of amount of physical memory
– Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
Why does this work?

– Relies on key properties of user processes (workload)
 and machine architecture (hardware)

code
data
Program

Virtual Memory

Locality of Reference

Leverage locality of reference within processes
– Spatial: reference memory addresses near previously referenced addresses
– Temporal: reference memory addresses that have referenced in the past
– Processes spend majority of time in small portion of code

• Estimate: 90% of time in 10% of code
Implication:

– Process only uses small amount of address space at any moment
– Only small amount of address space must be resident in physical memory

Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost

SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

– Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

– Same behavior as if all of address space in main memory

Requirements:
– OS must have mechanism to identify location of each page in address space à
 in memory or on disk
– OS must have policy to determine which pages live in memory and which on disk

Virtual Address Space Mechanisms
Each page in virtual address space maps to one of three locations:

– Physical main memory: Small, fast, expensive
– Disk (backing store): Large, slow, cheap
– Nothing (error): Free

Extend page tables with an extra bit: present
– permissions (r/w), valid, present
– Page in memory: present bit set in PTE
– Page on disk: present bit cleared

• PTE points to block on disk
• Causes trap into OS when page is referenced
• Trap: page fault

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

– if TLB hit, address translation is done; page in physical memory
Else TLB miss...

– Hardware or OS walk page tables
– If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

– Trap into OS (not handled by hardware)
– OS selects victim page in memory to replace

• Write victim page out to disk if modified (use dirty bit in PTE)
– OS reads referenced page from disk into memory
– Page table is updated, present bit is set
– Process continues execution

SWAPPING Policies

Goal: Minimize number of page faults

– Page faults require milliseconds to handle (reading from disk)
– Implication: Plenty of time for OS to make good decision

OS has two decisions
– Page selection
 When should a page (or pages) on disk be brought into memory?

– Page replacement
 Which resident page (or pages) in memory should be thrown out to disk?

NEXT STEPS

Project 3: Due soon!

