
MEMORY: SWAPPING

Shivaram Venkataraman
CS 537, Fall 2024

Hello !

ADMINISTRIVIA
Project 3 due very soon?

Midterm 1: Multiple choice questions
Oct 15th from 5.45pm to 7.15pm

Old exams on Canvas
Review session

Lecture next week

-

AGENDA / LEARNING OUTCOMES

Memory virtualization
How we support virtual mem larger than physical mem?
What are mechanisms and policies for this?(
Swapping

RECAP

Multilevel Page Tables
Divide thy mem

Into fixed
-

size pages

VPN - PPN if
there

are

J no
allocation->

part
in
this

Address format for multilevel Paging

How should logical address be structured? How many bits for each paging level?
Goal?

– Each inner page table fits within a page
– PTE size * number PTE = page size

Assume PTE size = 4 bytes
Page size = 2^12 bytes = 4KB

à # bits for selecting inner page =

Remaining bits for outer page:
– 30 – ___ – ___ = ___ bits

outer page inner page page offset (12 bits)
30-bit address:

--

e
12 18 g

Multilevel Translation EXAMPLE
PPN

0x3
-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
 -
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0xFEED0

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:

virtual
- - address

-

offet EDO

zt
inner

outfes F

S 0x 55 EDO

-

= inner PT
PA

Inverted Page TAble
Only store entries for virtual pages w/ valid physical mappings

Naïve approach:
Search through data structure <ppn, vpn+asid> to find match

 Too much time to search entire table

Better:
 Find possible matches entries by hashing vpn+asid
 Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB

& hash table

↳ compact
-

TLB miss

invokedM os gets
and searches
-

thru page
table

TRANSLATING LARGE PAGES
HugePages saves TLB entries. But how does it affect page translation?

4KB pages: 4 levels à 4 memory accesses

2MB pages:

Page Map Lvl 4
(bits) page offset (bits)Page Pointer Dir.

(bits)
Page Directory

(bits)

4 KB - small

2MB - huge

pages

TLB hit rate is better !

21
9 9 9

-> 3 levels 3 mem access for translation

->
internal fragmentation

SWAPPING

Motivation
OS goal: Support processes when not enough physical memory

– Single process with very large address space
– Multiple processes with combined address spaces

User code should be independent of amount of physical memory
– Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
Why does this work?

– Relies on key properties of user processes (workload)
 and machine architecture (hardware)

Photoshop

48 ent space 170alry
8GB of memory

BJBD
39O

WORKLOAD PROPERTIES

Leverage locality of reference within processes
– Spatial: reference memory addresses near previously referenced addresses
– Temporal: reference memory addresses that have referenced in the past
– Processes spend majority of time in small portion of code

• Estimate: 90% of time in 10% of code
Implication:

– Process only uses small amount of address space at any moment
– Only small amount of address space must be resident in physical memory

-> popular pages

↳ lots of memory
not popular ?

HARDWARE: Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost

10s C
-

few register
- 1 - S

MB
->

namo seconds

100s of us
o -

->-10s
to

↑ 100 of me 100s of as

SSDS I swap to disp
->

HMDS

10s of GBs
! ↳

vierabytes

SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

– Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

– Same behavior as if all of address space in main memory

Requirements:
– OS must have mechanism to identify location of each page in address space à
 in memory or on disk
– OS must have policy to determine which pages live in memory and which on disk

-some pagesa set

·as
Edien

Virtual Address Space Mechanisms
Each page in virtual address space maps to one of three locations:

– Physical main memory: Small, fast, expensive
– Disk (backing store): Large, slow, cheap
– Nothing (error): Free

Extend page tables with an extra bit: present
– permissions (r/w), valid, present
– Page in memory: present bit set in PTE
– Page on disk: present bit cleared

• PTE points to block on disk
• Causes trap into OS when page is referenced
• Trap: page fault

Addr Translation

Present

PTE f

PhysicalAddr 11)Page is in I-
mem

page is inelelocation (dI
-

diek

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?

choose page for replacement
write out page 10

to disk

↑=
52 S

& O

T32 -28

I
a

pay
is on

disk

-17
10 F

Read page from
-

disk
in

- - Update PTE -
Store page
Phys

mem .

Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

– if TLB hit, address translation is done; page in physical memory
Else TLB miss...

– Hardware or OS walk page tables
– If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

– Trap into OS (not handled by hardware)
– OS selects victim page in memory to replace

• Write victim page out to disk if modified (use dirty bit in PTE)
– OS reads referenced page from disk into memory
– Page table is updated, present bit is set
– Process continues execution

mapping from

VPN- Dick
- location

[PTE

#I Siste- PA

- -

QUIZ 8 https://tinyurl.com/cs537-fa24-q8

Virtual address space of 16KB with 64-byte pages.
How many bits in a virtual address?

Total number of entries in the Linear Page Table?

Two-level page table with a page directory.
Bits to select the inner page?
(assume PTE size = 4 bytes)

bits un
↳

4 bits to

IsME Passies
elect inner page

Page size are 32 bytes
VA space is 1024 pages (32 KB)
Physical Mem 128 pages

Multi-level page table.
 Upper five bits index into PD
Each page holds 32 PTEs.

The format of a PTE and PDE is:
VALID | PFN6 ... PFN0

PDBR has 13 (decimal)

0x0214

= Sbits
-

- -
/

I

-

-

-

E
↳ I byte

-

its
-

000 0010 0001000,
O ne

#

-
-J- offset

PB inner

bits PT Sbits

3 3

Page 3

Page 7

1000 0011 = 3

rai
VALID PBN

Table inner PTE : 10000

->
inner Page

3 bit
~ 16
-

B
........ 1

1000 1110 000111010100 -

OxId4J* #-
- -

- valid g 2

PPv offset

B7] Bigthliyte
Ox Of 2 -> Polyrical address o"1000 dida

PPN offset PPN
-
-

SWAPPING Policies

SWAPPING Policies

Goal: Minimize number of page faults

– Page faults require milliseconds to handle (reading from disk)
– Implication: Plenty of time for OS to make good decision

OS has two decisions
– Page selection
 When should a page (or pages) on disk be brought into memory?

– Page replacement
 Which resident page (or pages) in memory should be thrown out to disk?

-

↳ can runpolicy
for ~ 10 or 100 Ms

Page Selection
Demand paging: Load page only when page fault occurs

– Intuition: Wait until page must absolutely be in memory
– When process starts: No pages are loaded in memory
– Problems: Pay cost of page fault for every newly accessed page

Prepaging (anticipatory, prefetching): Load page before referenced
– OS predicts future accesses (oracle) and brings pages into memory early
– Works well for some access patterns (e.g., sequential)

Hints: Combine above with user-supplied hints about page references
– User specifies: may need page in future, don’t need this page anymore, or

sequential access pattern, ...
– Example: madvise() in Unix

Pagefault
I Y

rosequentiallyT don't bring
-> wasteful pages

into

memory

-> Performance
??

G

-allowe user processes to give
hints

Page Replacement
Which page in main memory should selected as victim?

– Write out victim page to disk if modified (dirty bit set)
– If victim page is not modified (clean), just discard

OPT: Replace page not used for longest time in future
– Advantages: Guaranteed to minimize number of page faults
– Disadvantages: Requires that OS predict the future; Not practical, but good for

comparison

- swapped out to

disk

classic problem

-

Stream of page accesses

7 ↑
&I A ,

B
,
X , A ,

<
, DA .B....

-
D time

Page Replacement
FIFO: Replace page that has been in memory the longest

– Intuition: First referenced long time ago, done with it now
– Advantages: Fair: All pages receive equal residency; Easy to implement
– Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
– Intuition: Use past to predict the future
– Advantages: With locality, LRU approximates OPT
– Disadvantages:

• Harder to implement, must track which pages have been accessed
• Does not handle all workloads well

*, B , C
,
D
,
E, F - - - -

↑

Temporal
locality

Page Replacement

Page reference string:
DDBBACBDBD

OPT FIFO LRU

B
B

A

C

B

D

Three pages
of physical
memory

Metric:
Miss count

D

D

B
D

4 misses I 6

D

i i D
S misses

DB DB
B B

D B D Br B
DB A DB A DB A

-

DB E CB A C B A

hits &
C B A C B A

BC C D . A CBD
#

D B C C D C B D

DB C cy C BD

Page Replacement Comparison

Add more physical memory, what happens to performance?
LRU, OPT:
• Guaranteed to have fewer (or same number of) page faults
• Smaller memory sizes are guaranteed to contain a subset of larger memory sizes
• Stack property: smaller cache always subset of bigger

FIFO:
• Usually have fewer page faults
• Belady’s anomaly: May actually have more page faults!

Fifo Performance may Decrease!

Consider access stream: ABCDABEABCDE

Physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

Implementing LRU
Software Perfect LRU

– OS maintains ordered list of physical pages by reference time
– When page is referenced: Move page to front of list
– When need victim: Pick page at back of list
– Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
– Associate timestamp register with each page
– When page is referenced: Store system clock in register
– When need victim: Scan through registers to find oldest clock
– Trade-off: Fast on memory reference, slow on replacement (especially as size of

memory grows)

In practice
 LRU is an approximation anyway, so approximate more?

Clock Algorithm
Hardware

– Keep use (or reference) bit for each page frame
– When page is referenced: set use bit

Operating System
– Page replacement: Look for page with use bit cleared

(has not been referenced for awhile)
– Implementation:

• Keep pointer to last examined page frame
• Traverse pages in circular buffer
• Clear use bits as search
• Stop when find page with already cleared use bit, replace this page

Clock: Look For a Page

0 1 2 3Physical Mem:

Use= Use= Use= Use=

clock hand

Use = 1,1,0,1 to begin

Clock Extensions

Replace multiple pages at once
– Intuition: Expensive to run replacement algorithm and to write single block to disk
– Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
– Intuition: More expensive to replace dirty pages
 Dirty pages must be written to disk, clean pages do not
– Replace pages that have use bit and dirty bit cleared

SUMMARY: VIRTUAL MEMORY

Abstraction: Virtual address space with code, heap, stack
Address translation
 - Contiguous memory: base, bounds, segmentation
 - Using fixed sizes pages with page tables
Challenges with paging
 - Extra memory references: avoid with TLB
 - Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

NEXT STEPS

Next class: Midterm 1 review!

