MEMORY: SWAPPING

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 3 due very soon?

Midterm |: Multiple choice questions
Oct |15 from 5.45pm to 7.15pm

—eee—e

Old exams on Canvas
Review session

Lecture next week

AGENDA / LEARNING OUTCOMES

Memory virtualization
How we support virtual mem larger than physical mem?

What are mechanisms and policies for this?

)
Sty

RECAP

MULTILEVEL PAGE TABLES
Dwidke Vﬂz P

Multi-level Page Table

A& 'JC"“"X PDBR| 500 |

- © T -
F— — o
v r , S PN S 5 PFN
ST 201 ~— "[Ix] 12 =
N0 1] rx 13 X
Z [0 - ol - - z
(T (T
o 1 204 — 1lw| 100 | o ve
The Page Directory \ eve)
vep = PTN [Page 1 of PT: Not Allocated] e ajﬁv Fow
[Page 2 of PT: Not Allocated] : /W’k
n 4
> 0 - - g
0| - - 30
1lw| 8 | Z
1] rw 15 a

ADDRESS FORMAT FOR MULTILEVEL PAGING

30-bit address:

outer page inner page page offset (12 bits)

How should logical address be structured? How many bits for each paging level?
Goal?

— Each inner page table fits within a page

— PTE size * number PTE = page size e ﬂ 4ED

Assume PTE size = 4 bytes ~ K\
. _an _ P
Page size = 2212 bytes = 4KB 4 e ¥ ?”jb
> # bits for selecting inner page = 10 _ 1024
- \ todles
W{l&b

Remaining bits for outer page:
— 30—-1L — 10 =% bits

MULTILEVEL TRANSLATION EXAMPLE

page directory page of PT (@PPN:0x3) page of PT (@PPN:0x92) viv e
PPN valid PPN valid PPN valid
0x3 | 0x10 | - 0 translate OxFEEDQ
-0 0x23 | 0 —
0 . 0 0
0 : 0 0 ofek €DV
0 0x80 ! 0 c
0 0x59 ! 0 {anY &
0 i 0 0 e
0 0 0 om;{y
0 0 0
0 0 0
0 0 0 3
0 0 0
0 0 - 0 Ox 95 2
- 0 0 0x55 |
0x92 | &— . 0 0x45 ! 2
T~ imev PT

20-bit address:

outer page(4 bits) inner page(4 bits) page offset (12 bits)

INVERTED PAGE TABLE

Only store entries for virtual pages w/ valid physical mappings

\% hast tabhe
Naive approach:

Search through data structure <ppn, vpn+asid> to find match [-/) 07”‘1“%

Too much time to search entire table

Better:
Find possible matches entries by hashing vpn+asid .
Smaller number of entries to search for exact match > : ,ykJ
WV
| 0s b

Managing inverted page table requires software-controlled TLB a»«él e Chs

~ le
e P to

TRANSLATING LARGE PAGES

HugePages saves TLB entries. But how does it affect page translation?

4KB pages: 4 levels = 4 memory accesses

47 - 39 38-30 29-21 21-12
Page Map Lvl 4 Page Pointer Dir. Page directory Page table
(9 bits) (9 bits) (9 bits) (9 bits)
IMB pages: 7L b ~vafe n o bLufler }

4 k8 — pralk

oM - by
(i

1-0

Page Map Lvl 4
(4 bits)

Page Pointer Dir.

(4 bits)

Page Directory

(4 bits)

page offset (-\ bits)

- 3 LQ”JA =)

— b\teﬁ\aﬂ

3 wor

ALLNS ,fw

,'Lvaﬁwemtaﬁ:%

ool afem

SWAPPING

MUTIVATIUN put

lo G4
e space i} ey
OS goal: Support processes when not enough physical memory

— Single process with very large address space

PoB o meT)

— Multiple processes with combined address spaces

User code should be independent of amount of physical memory

— Correctness, if not performance \ ‘ (
Virtual memory: OS provides illusion of more physical memory N
Why does this work? 368 -

— Relies on key properties of user processes (workload) WM”Z

and machine architecture (hardware)

WORKLOAD PROPERTIES

Leverage locality of reference within processes
— Spatial: reference memory addresses near previously referenced addresses
— Temporal: reference memory addresses that have referenced in the past

— Processes spend majority of time in small portion of code
* Estimate: 90% of time in 10% of code — @o{wﬂw)r”jw

Implication:
P L> s et o
— Process only uses small amount of address space at any moment

ot peplar?

— Only small amount of address space must be resident in physical memory

HARDWARE: MEMORY HIERARCHY

Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

- - — cost
reglsters

[’ tos 1} ™ main memory

s

HOVP disk storage
v

|Ds % 6Py & NT@(@L%'%

SWAPPING INTUITION

|dea: OS keeps unreferenced pages on disk Ave
— Slower, cheaper backing store than memory B0 /} ¥

Process can run when not all pages are loaded into main memory

OS and hardware cooperate to make large disk seem like memory .

— Same behavior as if all of address space in main memory dnk
— ORA

3a6

— OS must have mechanism to identify location of each page in address space 2>

Requirements:

in memory or on disk
— OS must have policy to determine which pages live in memory and which on disk

VIRTUAL ADDRESS SPACE MECHANISMS
Add~ Tromlat®™

— Physical main memory: Small, fast, expensive Preset

Each page in virtual address space maps to one of three locations:

— Disk (backing store): Large, slow, cheap P1E r

— Nothing (error): Free
g (error) o s i [Pgeod i
Extend page tables with an extra bit: present onbrn

— permissions (r/w), valid, present o ‘\/W_o_-
— Page in memory: present bit set in PTE f""X- S 7| Dinke be
— Page on disk: present bit cleared drsle

* PTE points to block on disk
* Causes trap into OS when page is referenced

* Trap: page fault

v veplacomet

w'Y'\“ILL 0"‘/(’ PaZL 1o
Disk /
PEN valid prot present

5'?’M| =X EO
2% 23 : (
Bl e
-0 - - .
S ok
.0]] A
0 : : P
0 : : /
- = = /l o
| rw- — ®
o 1 EE—me— g e
A
What if access vpn Oxb? ~ U?owl P{e ~ Stove 4’“2‘ B

Pop

VIRTUAL MEMORY MECHANISMS

First, hardware checks TLB for virtual address

Else

Else
e

if TLB hit, address translation is done; page in physical memory

reppiog

Hardware or OS walk page tables NIVE Dise
If PTE designates page is present, then page in physical memory ﬂo when
(i.e., present bit is cleared) .
Ple
Trap into OS (not handled by hardware) | e PA d

OS selects victim page in memory to replace
* Write victim page out to disk if modified (use dirty bit in PTE)
OS reads referenced page from disk into memory

Page table is updated, present bit is set
Process continues execution

OU |Z 8 https://tinyurl.com/cs537-fa24-q8

0o. -
Virtual address space of 16KB with 64-byte pages. |4 byfes
. : ,]
How many bits in a virtual address!? e b vk |
J—
P
Total number of entries in the Linear Page Table!? J—J lb kB
b8 _ 25(
bYy
Two-level page table with a page directory.
Bits to select the inner page? '____O
assume PTE size = 4 bytes _ |4t
4 bt P CJ bu: byftes

/4(1(4 £ nreY y“je-

page
page
page
page
payge
,page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page
page

O~NOULHAH WN=O

:00
NAWANANANANANAGCG Y ANANAANANANANANANANANANANAL - ANANA AR ANANAL Y AL
:151d0dea111d40200A5130,070c01091e12081dObO7010406071bO8AT7121cA917
NAWANAFANANAWANAT IANANANARANANAR: CANAVANANANARANANANANANANANA WA
ANAWANANANANARANANANANANAR: Y AANAR AV AN AN AN ANAN AN ANANANANA YA A AT
:1c010a0f061b03021e00060c1bNa111813190010001a00020d130013030a0116
:00
:0d0104011e0e08040803181c1902121a0c180010170d031e190816051316120d
NANANATANARINA NG
:00
:000LOOLAOOOOOOOOLOOO
:0e111413081114091a041e1d1e000cP216121616001a1d13081d101b131e1007
:0d040aleN80aNe1606050e090704191803140d02021e0310151715020b031618
:8384fe9588a57f9bcilcfebccdde87fa79ef3977ffda3f8d5ecc3a97f7f909981
:07091c0408110e0dOOO4091a1318041e190d1d0ePa160415051c131a1b141206
:00021b1307090f161c04061e08020f0c100907171d0fO5141a1d0f1714001002
Tt fcfar7fbd7f7f7f7f
:130a18141d06021b13080903130c0N810140eOb1b131716011a30710141e171206
:0614140a1c1411010c080e1c1a01151c10021a0d1e1b191c021809040b120006d
:00
:071500160519121b1e19131a0dObOf190a100d001404160217000304150f0618
NAWAWAWAVANANARARARANANANANANANANANANANANANANAT- A NANANANANANA NS
:00
NAWANARCYANANANANAR: YA AANANANANANANANANANANANANANANANAL I YANANANA
:000LOOLAOOOOOOOOLOOO
awAlCANANANANANANANANANANANANANANANANANAANANANANAANANANA NS S
:151d0602080a1a0101100e06150c1e061003031d1b170f14070506080cOfO80a
A NANANANANANALS NANANANANART-YANANANANANANANANANANANANANANANANA A
:00
:030e0e0b02141e0b1b0af80e1e1813010dOOO10bO7030f181c1cOdO51dOdOa19
Al LAwAAAAANA A FANANANANANANANANANANANANANAVANANANANANA

Page size are 32 bytes . 5 hi#4

VA space is 1024 pages (32-KB)
Physical Mem 128 pages

Multi-level page table.
Upper five bits index into PD
Each page holds 32 PTEs.

> byte
The format of a PTE and PDE is
VALID | PFN6 ... PFNO

L < Tk

PDBR has |13 (decimal)

0x0214
oglo 0001 21°%
g/\/ﬂﬁ;/ offsck
01 5hdA
5

lboo OO N -2

Ff
VALLD PPN
. r]’}\}jg_ L Ane ?TE - 10000
Page 3 — ALY Paj(5 ly‘*\’ ~ b

7E7ETETE7ETE 77T Ry FTETETE 7 TF7EReTFTETETETE7FTFIETETETETEIFTFAF
O,_L’L_~—-.,r', “6

|0w HD |olDO =_Oxlr)“l’
/ < A

PP AN DFFW

SWAPPING POLICIES

SWAPPING POLICIES

Goal: Minimize number of page faults

— Page faults require milliseconds to handle (reading from disk)
— Implication: Plenty of time for OS to make gbod decision
. Cor ™A
“— Y
OS has two decisions ‘F’“/ v [0 ov 00 Yz
— Page selection

When should a page (or pages) on disk be brought into memory?

— Page replacement
Which resident page (or pages) in memory should be thrown out to disk?

@uad:d’é Jj

s, | sesits PAGE SELECTION

2 g
Demand paging: Load page only when page fault occurs / JZ;QN 4,0%,5 N3
— Intuition: Wait until page must absolutely be in memory ey
— When process starts: No pages are loaded in memory
— Problems: Pay cost of page fault for every newly accessed page 5 Do fort Ante ??

Prepaging (anticipatory, prefetching): Load page before referenced

— OS predicts future accessend brings pages into memory early

— Works well for some access patterns (e.g., sequential)

Hints: Combine above with user-supplied hints about page references
— User specifies: may need page in future, don’t need this page anymore, or

sequential access pattern, ... '

_ 5 wibly
Example: madws&@g Unix . MV‘) /jﬁ o

PAGE REPLACEMENT

Swﬂ\MﬂJ ouk e
dirk

Which page in main memory should selected as victim?
— Write out victim page to disk if modified (dirty bit set)

— If victim page is not modified (clean), just discard

lasgee prle
OPT: Replace page not used for longest time in future

— Advantages: Guaranteed to minimize number of page faults

— Disadvantages: Requires that OS predict the future; Not practical, but good for

comparison vt e/k ’I’aj‘ ACEIMALA
]A B R AC P /’\/%

Fe--

PAGE REPLACEMENT ,

FIFO: Replace page that has been in memory the longest

(S, C'D'é’
T

— Intuition: First referenced long time ago, done with it now

— Advantages: Fair: All pages receive equal residency; Easy to implement

— Disadvantage: Some pages may always be needed N
Tork”

LLRU: Least-recently-used: Replace page not used for longest time in past)‘pw},«(ﬁ
— Intuition: Use past to predict the future
— Advantages: With locality, LRU approximates OPT
— Disadvantages:
* Harder to implement, must track which pages have been accessed
* Does not handle all workloads well

Three pages

PAGE REPLACEMENT

FIFO= b

LRU

of physical
memory
b OPT
D D
Page reference stringg D |D
DDBBACBDBD B |D|»
B [p|B
A p B A
Metric: CD 9|«
Miss count BB [D[B [e
D [pIp [
B | D|Y |c
D[p|f |C

D
D
)
D
P
@
C
>
C
C

QIR (D[] [oo] | ioo|[™

Pl ||| > | [

NRI D o] =] = (P12
WU\UDW\'P@\@_D

\C)U‘e>>>

PAGE REPLACEMENT COMPARISON

Add more physical memory, what happens to performance?

LRU, OPT:

* Guaranteed to have fewer (or same number of) page faults

* Smaller memory sizes are guaranteed to contain a subset of larger memory sizes

e Stack property: smaller cache always subset of bigger

FIFO:
* Usually have fewer page faults

* Belady’s anomaly: May actually have more page faults!

FIFO PERFORMANGE MAY DECREASE!

Consider access stream: ABCDABEABCDE
Physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?

IMPLEMENTING LRU

Software Perfect LRU

OS maintains ordered list of physical pages by reference time
When page is referenced: Move page to front of list

When need victim: Pick page at back of list

Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU

Associate timestamp register with each page
When page is referenced: Store system clock in register
When need victim: Scan through registers to find oldest clock

Trade-off: Fast on memory reference, slow on replacement (especially as size of
memory grows)

In practice

LRU is an approximation anyway, so approximate more?

CLOCK ALGORITHM

Hardware
— Keep use (or reference) bit for each page frame
— When page is referenced: set use bit
Operating System
— Page replacement: Look for page with use bit cleared
(has not been referenced for awhile)
— Implementation:
* Keep pointer to last examined page frame
* Traverse pages in circular buffer
* Clear use bits as search
* Stop when find page with already cleared use bit, replace this page

CLOCK: LOOK FOR A PAGE

se= se= se=
Physical Mem: O I 2 3
)
h

Use = |,1,0,] to begin

CLOCK EXTENSIONS

Replace multiple pages at once
— Intuition: Expensive to run replacement algorithm and to write single block to disk
— Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
— Intuition: More expensive to replace dirty pages
Dirty pages must be written to disk, clean pages do not
— Replace pages that have use bit and dirty bit cleared

SUMMARY: VIRTUAL MEMORY

Abstraction:Virtual address space with code, heap, stack
Address translation

- Contiguous memory: base, bounds, segmentation

- Using fixed sizes pages with page tables
Challenges with paging

- Extra memory references: avoid with TLB

- Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)

NEXT STEPS

Next class: Midterm | review!

