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ADMINISTRIVIA
Project 3 due very soon?

Midterm 1: Multiple choice questions
Oct 15th from 5.45pm to 7.15pm 

Old exams on Canvas
Review session

Lecture next week



AGENDA / LEARNING OUTCOMES

Memory virtualization
How we support virtual mem larger than physical mem?
What are mechanisms and policies for this?



RECAP



Multilevel Page Tables



Address format for multilevel Paging

How should logical address be structured? How many bits for each paging level?
Goal?  

– Each inner page table fits within a page
– PTE size * number PTE = page size

Assume PTE size = 4 bytes
Page size = 2^12 bytes = 4KB

à # bits for selecting inner page = 

Remaining bits for outer page: 
– 30 – ___ – ___ = ___ bits

outer page inner page page offset (12 bits)
30-bit address:



Multilevel Translation EXAMPLE 
PPN

0x3
-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

page directory
PPN
0x10
0x23
-
-
0x80
0x59
-
-
-
-
-
-
-
-
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0

page of PT (@PPN:0x3)
PPN
 - 
-
-
-
-
-
-
-
-
-
-
-
-
0x55
0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

page of PT (@PPN:0x92)

translate 0xFEED0

outer page(4 bits) inner page(4 bits) page offset (12 bits)

20-bit address:



Inverted Page TAble
Only store entries for virtual pages w/ valid physical mappings

Naïve approach: 
Search through data structure <ppn, vpn+asid> to find match

   Too much time to search entire table

Better: 
 Find possible matches entries by hashing vpn+asid
   Smaller number of entries to search for exact match

Managing inverted page table requires software-controlled TLB



TRANSLATING LARGE PAGES
HugePages saves TLB entries. But how does it affect page translation?

4KB pages: 4 levels à 4 memory accesses

2MB pages:

Page Map Lvl 4
(    bits) page offset (      bits)Page Pointer Dir.

(    bits)
Page Directory

(    bits)



SWAPPING



Motivation
OS goal: Support processes when not enough physical memory

– Single process with very large address space
– Multiple processes with combined address spaces

User code should be independent of amount of physical memory
– Correctness, if not performance

Virtual memory: OS provides illusion of more physical memory
Why does this work?

– Relies on key properties of user processes (workload) 
     and machine architecture (hardware)



WORKLOAD PROPERTIES

Leverage locality of reference within processes
– Spatial: reference memory addresses near previously referenced addresses
– Temporal: reference memory addresses that have referenced in the past
– Processes spend majority of time in small portion of code

• Estimate: 90% of time in 10% of code
Implication: 

– Process only uses small amount of address space at any moment
– Only small amount of address space must be resident in physical memory



HARDWARE: Memory Hierarchy
Leverage memory hierarchy of machine architecture
Each layer acts as “backing store” for layer above

disk storage

main memory

cache

registers

size
speed cost



SWAPPING Intuition
Idea: OS keeps unreferenced pages on disk

– Slower, cheaper backing store than memory

Process can run when not all pages are loaded into main memory
OS and hardware cooperate to make large disk seem like memory

– Same behavior as if all of address space in main memory

Requirements:
– OS must have mechanism to identify location of each page in address space à 
     in memory or on disk
– OS must have policy to determine which pages live in memory and which on disk



Virtual Address Space Mechanisms
Each page in virtual address space maps to one of three locations:

– Physical main memory: Small, fast, expensive
– Disk (backing store): Large, slow, cheap
– Nothing (error): Free

Extend page tables with an extra bit: present
– permissions (r/w), valid, present
– Page in memory: present bit set in PTE
– Page on disk: present bit cleared

• PTE points to block on disk
• Causes trap into OS when page is referenced 
• Trap: page fault



Present Bit

PFN valid  prot        present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys Memory

Disk

What if access vpn 0xb?



Virtual Memory Mechanisms
First, hardware checks TLB for virtual address

– if TLB hit, address translation is done; page in physical memory
Else TLB miss...

– Hardware or OS walk page tables
– If PTE designates page is present, then page in physical memory

 page fault (i.e., present bit is cleared)
Else

– Trap into OS (not handled by hardware)
– OS selects victim page in memory to replace

• Write victim page out to disk if modified (use dirty bit in PTE)
– OS reads referenced page from disk into memory
– Page table is updated, present bit is set
– Process continues execution



QUIZ 8 https://tinyurl.com/cs537-fa24-q8

Virtual address space of 16KB with 64-byte pages. 
How many bits in a virtual address?

Total number of entries in the Linear Page Table?

Two-level page table with a page directory. 
Bits to select the inner page? 
(assume PTE size = 4 bytes)



Page size are 32 bytes
VA space is 1024 pages (32 KB)
Physical Mem 128 pages

Multi-level page table.
 Upper five bits index into PD
Each page holds 32 PTEs.

The format of a PTE and PDE is:
VALID | PFN6 ... PFN0

PDBR has 13 (decimal)

0x0214



Page 3

Page 7



SWAPPING Policies



SWAPPING Policies

Goal: Minimize number of page faults

– Page faults require milliseconds to handle (reading from disk)
– Implication: Plenty of time for OS to make good decision

OS has two decisions
– Page selection
     When should a page (or pages) on disk be brought into memory?

– Page replacement
     Which resident page (or pages) in memory should be thrown out to disk?



Page Selection
Demand paging: Load page only when page fault occurs

– Intuition: Wait until page must absolutely be in memory
– When process starts: No pages are loaded in memory
– Problems: Pay cost of page fault for every newly accessed page

Prepaging (anticipatory, prefetching): Load page before referenced
– OS predicts future accesses (oracle) and brings pages into memory early
– Works well for some access patterns (e.g., sequential)

Hints: Combine above with user-supplied hints about page references
– User specifies: may need page in future, don’t need this page anymore, or 

sequential access pattern, ...
– Example: madvise() in Unix



Page Replacement
Which page in main memory should selected as victim?

– Write out victim page to disk if modified (dirty bit set)
– If victim page is not modified (clean), just discard

OPT: Replace page not used for longest time in future
– Advantages: Guaranteed to minimize number of page faults
– Disadvantages: Requires that OS predict the future; Not practical, but good for 

comparison



Page Replacement
FIFO: Replace page that has been in memory the longest

– Intuition: First referenced long time ago, done with it now
– Advantages: Fair: All pages receive equal residency; Easy to implement
– Disadvantage: Some pages may always be needed

LRU: Least-recently-used: Replace page not used for longest time in past
– Intuition: Use past to predict the future
– Advantages: With locality, LRU approximates OPT
– Disadvantages:

• Harder to implement, must track which pages have been accessed
• Does not handle all workloads well



Page Replacement

Page reference string: 
DDBBACBDBD

OPT FIFO LRU

B
B

A

C

B

D

Three pages
of physical 
memory

Metric:
Miss count

D

D

B
D



Page Replacement Comparison

Add more physical memory, what happens to performance?
LRU, OPT: 
• Guaranteed to have fewer (or same number of) page faults
• Smaller memory sizes are guaranteed to contain a subset of larger memory sizes
• Stack property: smaller cache always subset of bigger

FIFO: 
• Usually have fewer page faults
• Belady’s anomaly: May actually have more page faults!



Fifo Performance may Decrease!

Consider access stream: ABCDABEABCDE

Physical memory size: 3 pages vs. 4 pages

How many misses with FIFO?



Implementing LRU
Software Perfect LRU

– OS maintains ordered list of physical pages by reference time
– When page is referenced: Move page to front of list
– When need victim: Pick page at back of list
– Trade-off: Slow on memory reference, fast on replacement

Hardware Perfect LRU
– Associate timestamp register with each page
– When page is referenced: Store system clock in register
– When need victim: Scan through registers to find oldest clock
– Trade-off: Fast on memory reference, slow on replacement (especially as size of 

memory grows)

In practice
 LRU is an approximation anyway, so approximate more?



Clock Algorithm
Hardware

– Keep use (or reference) bit for each page frame
– When page is referenced: set use bit

Operating System
– Page replacement: Look for page with use bit cleared 

(has not been referenced for awhile)
– Implementation:

• Keep pointer to last examined page frame
• Traverse pages in circular buffer
• Clear use bits as search
• Stop when find page with already cleared use bit, replace this page



Clock: Look For a Page

0 1 2 3Physical Mem:

Use= Use= Use= Use=

clock hand

Use = 1,1,0,1 to begin



Clock Extensions

Replace multiple pages at once
– Intuition:  Expensive to run replacement algorithm and to write single block to disk
– Find multiple victims each time and track free list

Use dirty bit to give preference to dirty pages
– Intuition: More expensive to replace dirty pages
     Dirty pages must be written to disk, clean pages do not
– Replace pages that have use bit and dirty bit cleared



SUMMARY: VIRTUAL MEMORY

Abstraction: Virtual address space with code, heap, stack
Address translation
 - Contiguous memory: base, bounds, segmentation
 - Using fixed sizes pages with page tables
Challenges with paging
 - Extra memory references: avoid with TLB
 - Page table size: avoid with multi-level paging, inverted page tables etc.

Larger address spaces: Swapping mechanisms, policies (LRU, Clock)



NEXT STEPS

Next class: Midterm 1 review!


