
ADVANCED TOPICS: VIRTUAL MACHINES

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 5 happened?

Project 6 – last project!
 - Early deadline this week!
 - Final deadline end of next week

Shivaram office hours
 - TODAY at 1pm!

-> last week

-> Tomorrow

-> Friday

↳ 2hrs

AGENDA / LEARNING OUTCOMES

How to virtualize a machine underneath the OS?

PERSISTENCE RECAP

• Managing I/O devices significant part of OS
• Disk Drives, SSDs (pages, blocks)

• File Systems: OS provided API to access disk
• Simple FS: FS layout with supberblock, bitmaps, inodes, datablocks

• Fast File System: Key idea – put inode & data close together, namespace locality
• FSCK, Journaling – Handling/Preventing data inconsistencies

• Log Structured File System - Organize data based on writes

- Project 6

-

VIRTUAL MACHINES

Operating System
(Linux)

CPU

gcc

Operating System
(Linux)

gcc

CPU

Operating System
(OS X)

Mem Mem

-

↑ ↳

VIRTUAL MACHINE USE CASES

Share mainframe systems (1970s)

Cloud Computing
 - Consolidate multiple tenants running different OS
 - Strong Isolation

Run applications that only exist for specific OS
Testing, Debugging

-

809190s personal computing
terrents

I computer

↳ tenants do not interfere DDat Centerwith each

-

code
↳ want to chack if your

works on a diff OS.

DEFINITIONS
A virtual machine is a complete compute environment with its own isolated
processing capabilities, memory, and communication channels.

um

neider Docker
Jum -your

our os

containers

S ->
vomHardware

simulator

VIRTUAL MACHINE MONITORS

CPU Mem

Operating System
(Linux)

gcc

Operating System
(OS X)

Virtual Machine Monitor (Hypervisor)

Bare-metal Hypervisor (type-1)
direct control of all resources

Hosted Hypervisor (type-2)
operates as part of or on top of an
existing host OS

Guest OS

- ↑
Xen

kvm epa

GOALS

• Equivalence – The exposed resource is equivalent with the underlying
computer.

• Safety – Isolation requires that the virtual machines are isolated from each
other as well as from the hypervisor.

• Performance – The virtual system must show at worst a minor decrease in
speed.

-

-Diff guest OS

CAN WE VIRTUALIZE? (POPEK GOLDBERG 1974)
The processor’s system state, called the processor status word (PSW)
consists of the tuple (M, B, L, PC):
 the execution level M = {s, u} (superuser or user mode)
 the segment register (B,L); (Segmented Memory Model) and
 the current program counter (PC), a virtual address

A virtual machine monitor may be constructed if the set of sensitive
instructions for a computer is a subset of the set of privileged instructions.

-- x
kernel or user mode.

[Be base

Le limit

↑

be
L ↓ ↳ can only

instructions which
car be

run
in

can change modified by Rernel mode
state state

VIRTUALIZING THE CPU

Limited Direct Execution

How to handle privileged instructions (e.g., traps for system calls) ?
Trap and Emulate!

g(- sys-read
- interrupt
GGuest OS /TSenter emulate X

the how this Toys call handler
handle privileged

VMM happens
on

In
S

instruction
real hard

ware

BEFORE: SYSTEM CALL FLOW

RAM

Process P

sy
s_

re
ad

movl $6, %eax; int $64

sy
sc

al
l

Transfer control to trap handler. Execute appropriate syscall routine

- - -

NEW: SYSTEM CALL
Process P

sy
s_

re
ad

sy
sc

al
l

Virtual Machine Monitor

movl $6, %eax; int $64

I

Guest Os bootof
-

↳ privileged
inst to

instal

· interrupt
handler

USER MODE, KERNEL MODE?

MIPS architecture:
 - Guest OS runs in “supervisor” mode
 - No privileged instructions, some extra memory

Run Guest OS in user mode
 How to protect Guest OS data structures?

user -

-

->

-> supervisor

- Kernel -

-

> quest os

data structure

↳ from the other processes
inside

Guest OS

QUIZ 20
Log structured SSD consisting of 3 blocks and 10
pages per block. Each page holds a single
character.
The state of each page (i, v, or E), the data
stored at each page, and an indicator if a page is
currently live (i.e. has a mapping in the FTL).

• read(page#) -- if page is live returns the
character at the page, otherwise error

• write(page#,char) -- writes character to
logical page #

• erase(page#) -- removes logical page # from
the FTL mapping

-

-

-

-

O start

- -1
O

write
"t"t

age
4

6 new
Page

19

data
has some

now "t"

O
O

If a write(0,'q') is now performed by the OS on the SSD state from the last
question, what underlying SSD operations must be performed in order to
accomplish this write?

-

20

- Erase on
block 2-

-

20

store of
in page

---- EFE.....

q

· ↑

- - initial

8
State

&

2

gene-

-

T O - live data

-

VIRTUALIZING MEMORY

Challenge: Who manages physical memory allocation?
How do we share physical memory across Guest OSes? page

tables

7 virtual -> PhysicalI Process
virtedeng
ros
1..4 Physical memory

Extra level of
indirection!

vMM

Y
-

Process

Greet OS

BEFORE: SOFTWARE TLB HANDLER
TLB miss in hardware

Trap into OS
OS walks pagetable

Get VirtualàPhysical
Update TLB using

privileged instruction

--
TLB

-

w
physical

[
S fluch Ralued

a

Tlb

Application

NEW: SOFTWARE TLB HANDLER
TLB miss

 Trap into VMM
Call OS Handler

OS walks pagetable
Get VirtualàPhysical

Update TLB using
privileged instruction

 Trap handler

Physical à Machine
 Update TLB

to virtual e Papical
2 traps

install TLB

& ↑
=>

Physical

u
-> Machine

-↳
luy ⑳

TLb MISS oVERHEADs

Extra trap into VMM for Physical à Machine mapping

Avoid using Software “TLB” in VMM to cache Virtual à Physical

Hardware managed TLBs
 VMM maintains Shadow page table per of Virtual à Machine
 Trap when OS tries to update PTE (e.g., lcr3)

Part of

-

-

pagetables from

Guest OS

- -

-

Guest uS T update
PTE↳

x86 d
a eadow any

&

&

↓ trap into

every quest
a

the
umM

create

So, CAN WE VIRTUALIZE x86?
expose hardware / processor state

↑
-
O

-

PARA Virtualization, X86 Extensions

So far: No change to the guest OS. No changes to the hardware.
Downside: Overheads can be quite high?

Para virtualization
 Can we make (small?) modifications to the guest OS for efficiency?

Hardware
 Instruction set extensions (Intel, AMD)

-

↳ virtualization
" 86

friendly

XEN
Modify guest OS: simply undefine all of the 17 non-virtualizable instructions!
Alternate interrupt architecture

T read
Guest

updateG Xen -pie early 2000s

PlEs -

&--

-

INTEL VT-X EXTENSIONS
True Hardware Support meeting Popek / Goldberg Criteria
Do not change the semantics of individual instructions, instead duplicate the
entire visible state and introduce a new mode of execution: the root mode.

• Hypervisor is in root mode, Guest OS in non-root mode.
• Special new instructions for detecting mode (only available in root mode,

otherwise a trap is caused).
• New mode only used for virtualization
• Each mode has own address space
• Each mode has own interrupt flag

-
-

-

-

has its
each mode

2 CR3-

own PTBR

duplicated address spaces
etc.

·
or state

interrupt

= -
> -

werend uncreate) umexit8
1

L
- -

Kernel
level 64 GB

Next class: Multi-CPU scheduling

Thanksgiving break!

