ADVANCED TOPICS: VIRTUAL MACHINES

Shivaram Venkataraman

CS 537, Fall 2024

ADMINISTRIVIA

Project 5 happened? ____ | wk week

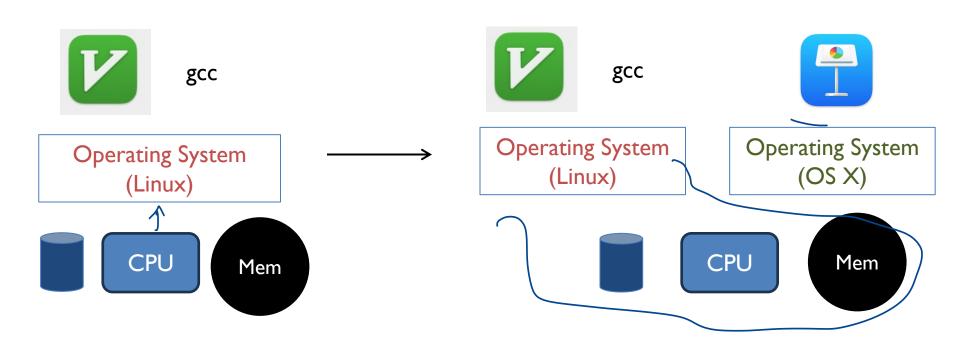
Project 6 – last project!

- Early deadline this week!
 Final deadline end of next week

Shivaram office hours

-TODAY at Ipm!

AGENDA / LEARNING OUTCOMES


How to virtualize a machine underneath the OS?

PERSISTENCE RECAP

- Managing I/O devices significant part of OS
- Disk Drives, SSDs (pages, blocks)
- File Systems: OS provided API to access disk
- Simple FS: FS layout with supberblock, bitmaps, inodes, datablocks
- Fast File System: Key idea put inode & data close together, namespace locality
- FSCK, Journaling Handling/Preventing data inconsistencies
- Log Structured File System Organize data based on writes

7 Project 6

VIRTUAL MACHINES

VIRTUAL MACHINE USE CASES

Share mainframe systems (1970s)

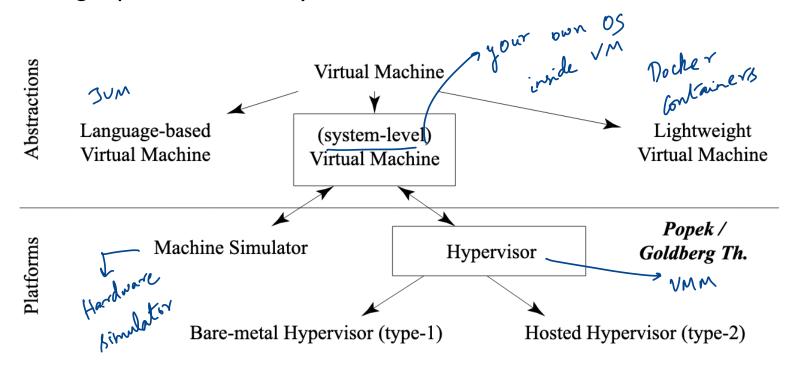
gos/gos personal computing tenants
unning different OS Computer

Cloud Computing

- Consolidate multiple tenants running different OS
- Strong Isolation

Ly kenonts do not interfere with each

Datacenter

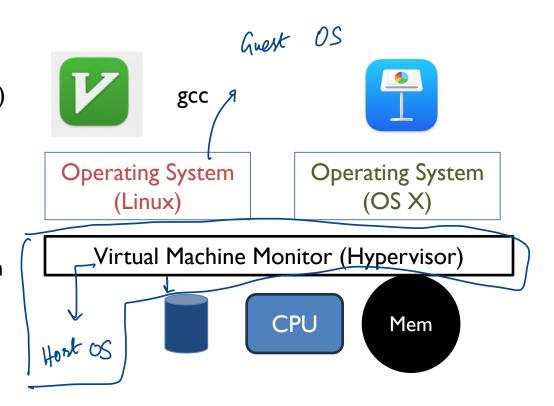

Run applications that only exist for specific OS

Testing, Debugging

works on a diff OS.

DEFINITIONS

A virtual machine is a complete compute environment with its own isolated processing capabilities, memory, and communication channels.



VIRTUAL MACHINE MONITORS

Bare-metal Hypervisor (type-I) direct control of all resources

Hosted Hypervisor (type-2) operates as part of or on top of an existing host OS

KVM -> part of Linux

GOALS

• Equivalence – The exposed resource is equivalent with the underlying computer.

• Safety – Isolation requires that the virtual machines are isolated from each other as well as from the hypervisor.

 Performance – The virtual system must show at worst a minor decrease in speed.

CAN WE VIRTUALIZE? (POPEK GOLDBERG 1974)

The processor's system state, called the processor status word (PSW) consists of the tuple (M, B, L, PC):

the execution level $M = \{s, u\}$ (superuser or user mode)
the segment register (B,L); (Segmented Memory Model) and Bo base

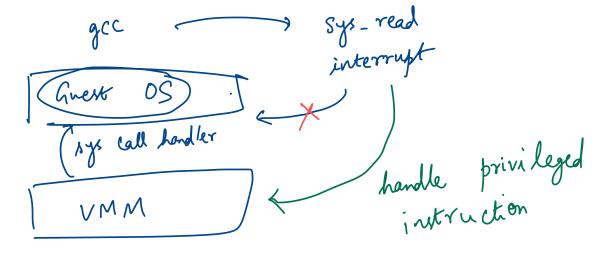
the current program counter (PC), a virtual address

A virtual machine monitor may be constructed if the set of sensitive instructions for a computer is a subset of the set of privileged instructions.

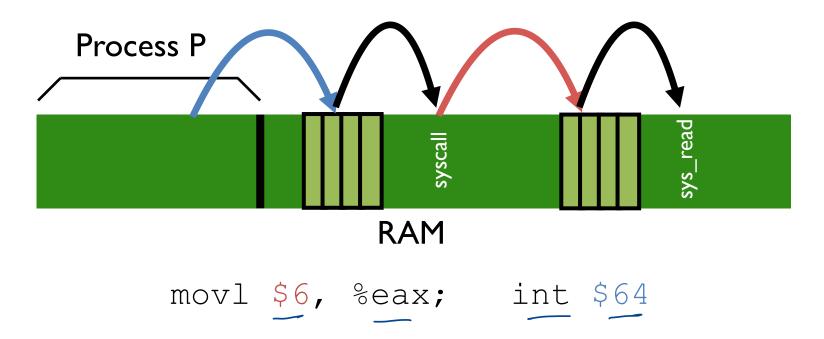
> {control-sensitive} ∪ {behavior-sensitive} ⊆ {privileged}.
>
> instructions which
>
> can be
>
> can change modified by
>
> state
>
> state con only be run in pernel mode

VIRTUALIZING THE CPU

Limited Direct Execution


How to handle privileged instructions (e.g., traps for system calls)?

enter emulate


the how this

VMM happens on

real hard

BEFORE: SYSTEM CALL FLOW

Transfer control to trap handler. Execute appropriate syscall routine

NEW: SYSTEM CALL

USER MODE, KERNEL MODE?

MIPS architecture:

- Guest OS runs in "supervisor" mode
- No privileged instructions, some extra memory

Run Guest OS in user mode

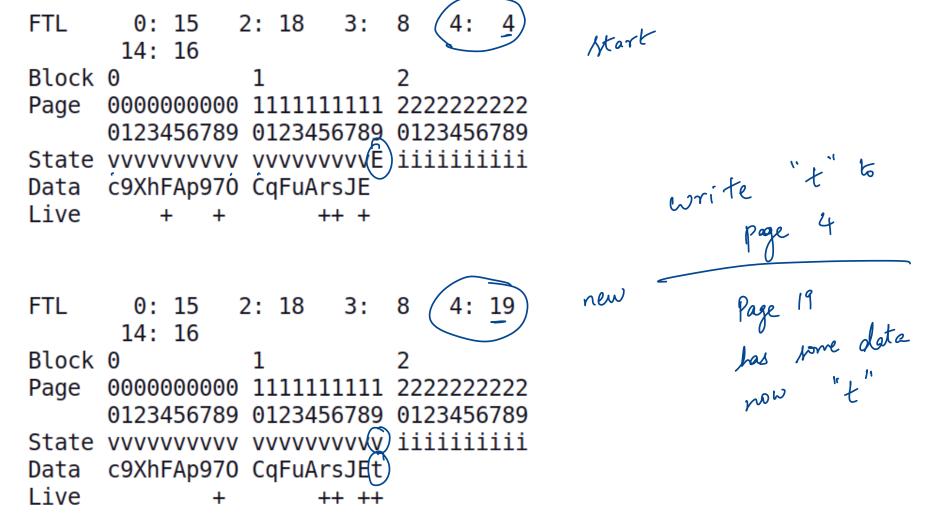
How to protect Guest OS data structures?

Guest OS

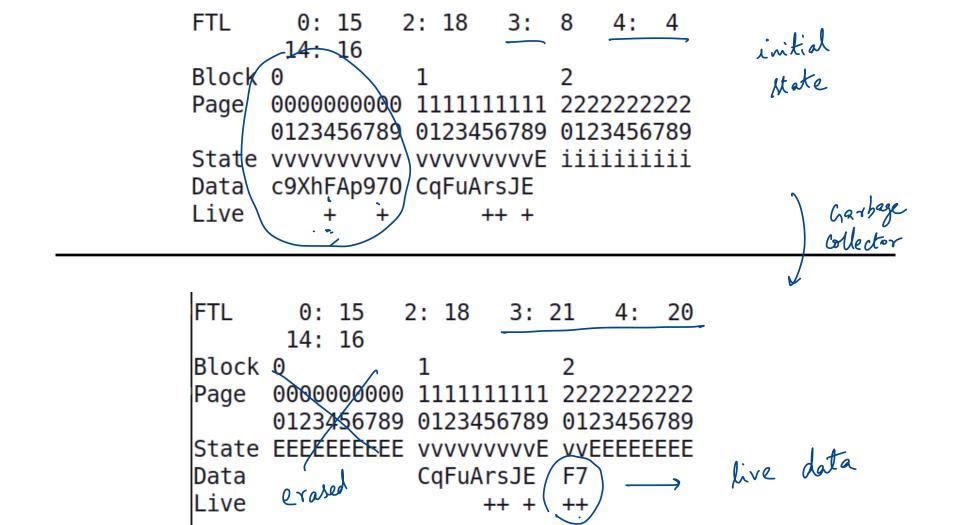
→ Supervisor

→ Remel

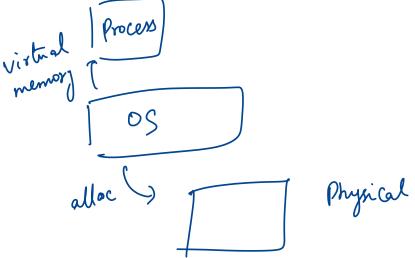
guest OS Lata structure


QUIZ 20

Log structured SSD consisting of 3 blocks and 10 pages per block. Each page holds a single character.


The state of each page (i, v, or E), the data stored at each page, and an indicator if a page is currently live (i.e. has a mapping in the FTL).

- read(page#) -- if page is live returns the character at the page, otherwise error
- write(page#,char) -- writes character to logical page #
- erase(page#) -- removes logical page # from the FTL mapping

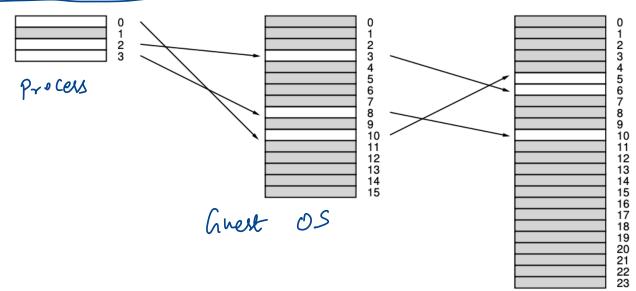

If a write(0,'q') is now performed by the OS on the SSD state from the last question, what underlying SSD operations must be performed in order to accomplish this write?

VIRTUALIZING MEMORY

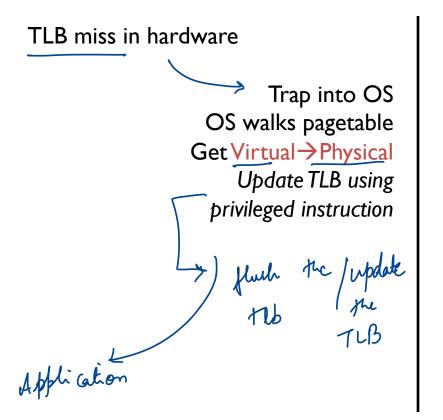
Challenge: Who manages physical memory allocation?

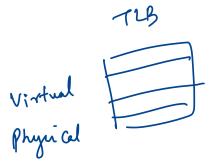
How do we share physical memory across Guest OSes?

Page tables Virtual >> Physical Extra level of indirection!

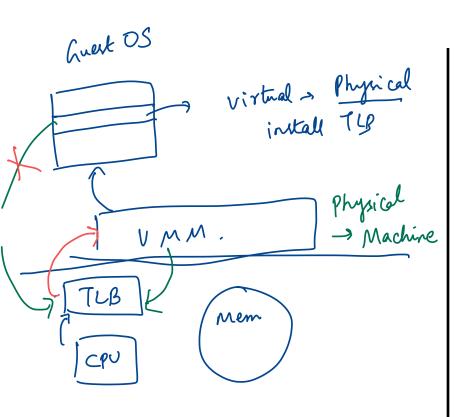

VPN 0 to PFN 10 VPN 2 to PFN 03 VPN 3 to PFN 08

PFN 03 to MFN 06 PFN 08 to MFN 10 PFN 10 to MFN 05 VMM


Virtual Address Space


"Physical Memory"

Machine Memory



BEFORE: SOFTWARE TLB HANDLER

NEW: SOFTWARE TLB HANDLER

TLB miss

2 traps

Trap into VMM Call OS Handler

OS walks pagetable
Get Virtual → Physical
Update TLB using
privileged instruction

Trap handler

Physical → Machine

Update TLB

TLB MISS OVERHEADS

Extra trap into VMM for Physical \rightarrow Machine mapping

Avoid using Software "TLB" in VMM to cache Virtual → Physical

Part of
Part o

VMM maintains Shadow page table per of Virtual → Machine

Trap when OS tries to update PTE (e.g., lcr3)

for every guest 0s — update PTE

for every guest 0s — update PTE

pt in guest 0s — update PTE

trap into

the VMM

create a shadow PT

SO, CAN WE VIRTUALIZE X86? expose hardware / processor state

Table 2.2: List of sensitive, unprivileged x86 instructions

Group	Instructions		
Access to interrupt flag	pushf, popf, iret		
Visibility into segment descriptors lar, verr, verw, lsl			
Segment manipulation instructions	pop <seg>, push <seg>, mov <seg></seg></seg></seg>		
Read-only access to privileged state sgdt, sldt, sidt, smsw			
Interrupt and gate instructions	fcall, longjump, retfar, str, int <n></n>		

PARA VIRTUALIZATION, X86 EXTENSIONS

So far: No change to the guest OS. No changes to the hardware.

Downside: Overheads can be quite high?

Para virtualization

Can we make (small?) modifications to the guest OS for efficiency?

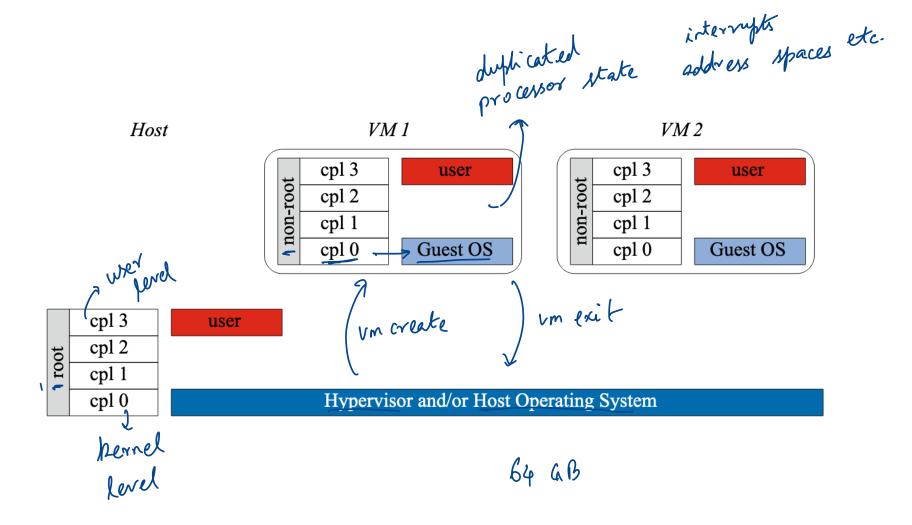
Hardware

Instruction set extensions (Intel, AMD)

×86 Virtualization friendly update huest read XEN early 2000s

Modify guest OS: simply undefine all of the 17 non-virtualizable instructions! Alternate interrupt architecture

		Memory Management	
	Segmentation	Cannot install fully privileged segment descriptors and cannot overlap with the	
		top end of the linear address space.	
	Paging	Guest OS has direct read access to hardware page tables, but updates are	
(batched and validated by the hypervisor. A domain may be allocated discontin-	
		uous machine (aka host-physical) pages.	
		CPU	
	Protection	Guest OS must run at a lower privilege level than Xen.	
	Exceptions	Guest OS must register a descriptor table for exception handlers with Xen.	
		Aside from page faults, the handler remains the same.	
	System calls	Guest OS may install a "fast" handler for system calls, allowing direct calls	
		from an application into its guest OS and avoiding indirection through Xen on)
<u> </u>		every call.	


INTEL VT-X EXTENSIONS

True Hardware Support meeting Popek / Goldberg Criteria Do not change the semantics of individual instructions, instead duplicate the entire visible state and introduce a new mode of execution: the root mode.

- Hypervisor is in root mode, Guest OS in non-root mode.
- Special new instructions for detecting mode (only available in root mode, otherwise a trap is caused).
- New mode only used for virtualization
- Each mode has own address space CR3 > each mode has its

 Each mode has own interrupt flag

 own PTBR

Next class: Multi-CPU scheduling

Thanksgiving break!