ADVANCED TOPIGS: VIRTUAL MACHINES

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 5 happened? 5 [wuh

Project 6 — last project!

- Early deadline this week! <~ Tom
- Final deadline end of next week — F”C”‘wa

rrow

Shivaram office hours
- TODAY at |pm!

Ly o~ 24

AGENDA / LEARNING OUTCOMES

How to virtualize a machine underneath the OS?

PERSISTENGE RECAP

Managing 1/O devices significant part of OS
Disk Drives, SSDs (pages, blocks)

File Systems: OS provided API to access disk]’7 ?we’jﬂ ok é
Simple FS: FS layout with supberblock, bitmaps, inodes, datablocks

Fast File System: Key idea — put inode & data close together, namespace locality

FSCK, Journaling — Handling/Preventing data inconsistencies

Log Structured File System - Organize data based on writes

——
.

VIRTUAL MACHINES

S~

Operating System > Operating System Operating System

L|nux) (Linux) (OS X)

@@ 1=

VIRTUAL MACHINE USE CASES

Share mainframe systems (Ifl(_)s) ‘
Sosl 9o P‘”/M/”Mﬁ Corpr i’]
Cloud Computing ooy

- Consolidate multiple tenants running different OS 'E Oovw‘[wh“
- Strong Isolation

b b MeY e e
D prets L R M

Run applications that only exist for specific OS

Testing, Debugging

L s B Check C i
worhst B~ o~ J“\{:P 0S5 .

DEFINITIONS

A virtual machine is a complete compute environment with its own isolated
processing capabilities, memory, and communication channels.

o oW Oj
» : : ‘80 v e’
Z Virtual Machine -~ 1)o PPIAL
B UM v [
: L - "
2 anguage-based (system—leve() Lightweight
< Virtual Machine Virtual Machine Virtual Machine
d AN
" . . - A Popek /
g r- Machine Simulator Hypervisor __| Goldberg Th.
2 et — VMM
£
b

Bare-metal Hypervisor (type-1)

Hosted Hypervisor (type-2)

VIRTUAL MACHINE MONITORS

Bare-metal Hypervisor (type-|)
direct control of all resources
Y em

Hosted Hypervisor (type-2)
operates as part of or on top of an
existing host OS

Operating Systém
(Linux)

Operating System
(OS X)

/

_Virtual Machine Monitor (Hypervisor)

GOALS

Equivalence — The exposed resource is equivalent with the underlying

—— e

computer.

,___,7 Ot W o<
Safety — Isolation requires that the virtual machines are isolated from each
other as well as from the hypervisor.

Performance —The virtual system must show at worst a minor decrease in
speed.

CAN WE VIRTUALIZE? (POPEK GOLDBERG 1974)

The processor’s system state, called the processor status word (PSW)
consists of the tuple (M, B, L, I,D.C): _hoek or whe wode

the execution level M = {s, u} (superuser or user mode) - hase
the segment register (B,L); (Segmented Memory Model) and L P

the current program counter (PC), a virtual address

A virtual machine monitor may be constructed if the set of sensitive
instructions for a computer is a subset of the set of privileged instructions.

{control-sensitive} U {behavior-sensitive} C {privileged}. be
Cor “'(’J

‘ . Y
\”‘M;’L"C/IZW Zale Can be - o A ole_
G Uit b J b ﬂefmd Mo

Make pMale

VIRTUALIZING THE GPU

Limited Direct Execution

How to handle privileged instructions (e.g., traps for system calls) ?

Trap and EmLLIate! 4cc) Sy vead
| ! ——— pnkerreff”
e [T

. Jodl)
L J/‘”"J "H”& AX ta 'Y'LV'{
YMM W o ,L/’ //\Dwu‘b P .

’V@i L\&Y@k \ VMM \M’W‘*J‘w

BEFORE: SYSTEM CALL FLOW

Process P
——A\

RAM

movl $6, %eax; int $64

—_——

Transfer control to trap handler. Execute appropriate syscall routine

NEW: SYSTEM CALL

Process P

movl $6, %eax; int So64 Lugp OS post P
L previlyd
P kel
Virtual Machine Monitor | hev \T/"
handley

USER MODE, KERNEL MODE?

wseY
. e-(\/\‘ ho
MIPS architecture: — S+
- Guest OS runs in “supervisor” mode —_ }w«@/(

- No privileged instructions, some extra memory
: o
L M e
Jake M
Run Guest OS in user mode
How to protect Guest OS data structures? A
[V

LJ) e~ ?’Wwys&
f

Guat OS

QuIZ 20

Log structured SSD consisting of 3 blocks and 10
pages per block. Each page holds a single
character.

The state of each page (i, v, or E), the data
stored at each page, and an indicator if a page is
currently live (i.e. has a mapping in the FTL).

* read(page#) -- if page is live returns the
character at the page, otherwise error

* write(page#,char) -- writes character to
logical page #

* erase(page#) -- removes logical page # from
the FTL mapping

FTL

Block
Page

State
Data
Live

FTL

Block
Page

State
Data
Live

0: 15 2: 18 3: 8
14: 16 “

0 1 2
0000000000 1111111111 2222222222
0123456789 0123456789 0123456789
VVVVVVVVVV yvvvvvvv%ﬁ)iiiiiiiiii
c9XhFAp970 CqFuArsJE

+ + ++ +

0: 15 2: 18 3: 8
14: 16

0 1 2
0000000000 1111111111 2222222222
0123456789 0123456789 0123456789
VVVVVVVVVV VVVVVVVVWY) 11111131111
c9XhFAp970 CqFuArs]

+ ++ ++

/S,’Cau(k

If a write(_%:) is now performed by the OS on the SSD state from the last
question, what underlying SSD operations must be performed in order to
accomplish this write!?

9 O
2
FTL 0: 35 2: 18 3: 8 4: 19 Cvase o bk
14 16 _ o
Block © 1 2 peve g, o~ PO

Page 0000000000 1111111111 2222222222
0123456789 0123456789 0123456789 ~

State vvvvvvvvvv vvvvvvvvvy i iEHEE €€

Data c9XhFAp970 CqFuArsJEt 4

Live + -+ ++ ¥

— cokiak
1 2 ke
1111111111 2222222222
0123456789 0123456789
VVVVVVVVVE 111iiiiiii
c9XhFAp970/ CqFuArsJE
- ++ + \ 0,445“20
J oA bor

State EEEEEEEEREE vvvvvvvvvE EEEEEEEE . Aﬁti
CqFuArsJE / F7 s fave
++ +\ ++

VIRTUALIZING MEMORY

Challenge:Who manages physical memory allocation?

Page Tolles
How do we share physical memory across Guest OSes!?

e l@ b ="
Mb‘ jos
aUaC,K') m Progpicok el

OS Page Table VMM Page Table yM M

Extra level of

VPN 0 to PFN 10 PFN 03 to MFN 06
indirection! VPN 2 to PFN 03 PFN 08 to MFN 10
VPN 3 to PFN 08 PFN 10 to MFN 05
Virtual Address Space "Physical Memory" Machine Memory
0 0 0
1 1 1
2 2 2
3 3 3
4 4
‘ow” Cerh 8 ;
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
i7
&IW CD-S 13
20
21
22
23

BEFORE: SOFTWARE TLB HANDLER

TLB miss in hardware

_, Th
Trap into OS

OS walks pagetable Vw’wi
Get Virtual-> Physical b

Update TLB using W‘“"J

\ privileged instruction
M e / “M&

n ™

L

NEW: SOFTWARE TLB HANDLER

Lok 05
A Phores ool TLB miss ya 'f"(a'jﬁ
V(th_an - :ﬁ—'
)E/‘ ikt (W Trap into VMM
Call OS Handler
C
?W‘C"L _ OS walks pagetable
j V /‘\’\’V\ ’ - N\”‘M Get Virtual-> Physical

Update TLB using
\q (Ii TLb \ privileged instruction
)C?U Trap handler

Physical = Machine
Update TLB

TLB MISS OVERHEADS

Extra trap into VMM for Physical = Machine mapping

) fart ol
Avoid using Software “TLB"” in VMM to cache Virtual > Physical ~ 07%& babfen ,ffw
put 05

Hardware managed TLBs

VMM maintains Shadow page table per of Virtual — Machine

Trap when OS tries to|update PTE (e.g., lcr3) " PTE
36 ookt uf =

X v e drop X
']L a 05 yMM

pr =
C*IUJQ A Mw T’(

S0, CAN WE VIRTUALIZE X867

/ L“f"’“’ /{\AYH(NQQ / /)Y‘OWY Mot

Table 2.2: List of sensitive, 86 instructions
Group ‘ Instructions

Access to interrupt flag pushf, popf, iret

Visibility into segment descriptors lar, verr, verw, lsl

Segment manipulation instructions | pop <seg>, push <seg>, mov <seg>
Read-only access to privileged state | sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>

PARA VIRTUALIZATION, X86 EXTENSIONS

So far: No change to the guest OS. No changes to the hardware.
Downside: Overheads can be quite high?

Para virtualization

Can we make (small?) modifications to the guest OS for efficiency?

Hardware

Instruction set extensions (Intel, AMD)

R
Nirbn alizafen ,f«fw“‘()

. huert l’_{)’w\
VW(Yen |)@ XEN ooty 207

Modify guest OS: simply undefine all of the |7 non-virtualizable instructions!
Alternate interrupt architecture

‘ Memory Management
Segmentation | Cannot install fully privileged segment descriptors and cannot overlap with the
top end of the linear address space. —

—

<@ging Guest OS has @@to hardware page tables, but updates are \>

batched and validated by the hypervisor. A domain may be allocated di 1-
——— | uous machine (aka host-physical)

'CPU
Protection Guest OS must run at a lower privilege level than Xen.
Exceptions Guest OS must register a descriptor table for exception handlers with Xen.

Aside from page faults, the handler remains the same.
<S/)G;;m calls | Guest OS may install a “fast” handler for system calls, a]lowinm

from an application into its guest OS and avoiding indirection throughXe&L,>
~— every call. S

INTEL VT-X EXTENSIONS

True Hardware Support meeting Popek / Goldberg Criteria
Do not change the semantics of individual instructions, instead duplicate the

entire visible state and introduce a new mode of execution: the root mode.

Hypervisor is in root mode, Guest OS in non-root mode.

—

Special new instructions for detecting mode (only available in root mode,
otherwise a trap is caused).

New mode only used for virtualization
{Each mode has own address space cRy -

Each mode has own interrupt flag

L
owmn PTHR

Host

Y root

A non-root

-

cpl 3

cpl 2

cpl 1

cpl 0

Hypervisor and/or Host Operating System

6o G0

Next class: Multi-CPU scheduling

Thanksgiving break!

