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ADMINISTRIVIA

Project 5 happened? 5 [  wuh

Project 6 — last project!

- Early deadline this week! <~ Tom
- Final deadline end of next week — F”C”‘wa
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Shivaram office hours
- TODAY at |pm!
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AGENDA / LEARNING OUTCOMES

How to virtualize a machine underneath the OS?



PERSISTENGE RECAP

Managing 1/O devices significant part of OS
Disk Drives, SSDs (pages, blocks)

File Systems: OS provided API to access disk ]’7 ?we’jﬂ ok é
Simple FS: FS layout with supberblock, bitmaps, inodes, datablocks

Fast File System: Key idea — put inode & data close together, namespace locality

FSCK, Journaling — Handling/Preventing data inconsistencies

Log Structured File System - Organize data based on writes
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VIRTUAL MACHINES
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VIRTUAL MACHINE USE CASES

Share mainframe systems (Ifl(_)s) ‘
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Cloud Computing ooy

- Consolidate multiple tenants running different OS 'E Oovw‘[wh“
- Strong Isolation
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Run applications that only exist for specific OS

Testing, Debugging
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DEFINITIONS

A virtual machine is a complete compute environment with its own isolated
processing capabilities, memory, and communication channels.
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Bare-metal Hypervisor (type-1)

Hosted Hypervisor (type-2)



VIRTUAL MACHINE MONITORS

Bare-metal Hypervisor (type-|)
direct control of all resources
Y em

Hosted Hypervisor (type-2)
operates as part of or on top of an
existing host OS

Operating Systém
(Linux)

Operating System
(OS X)
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_Virtual Machine Monitor (Hypervisor)




GOALS

Equivalence — The exposed resource is equivalent with the underlying
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computer.
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Safety — Isolation requires that the virtual machines are isolated from each
other as well as from the hypervisor.

Performance —The virtual system must show at worst a minor decrease in
speed.



CAN WE VIRTUALIZE? (POPEK GOLDBERG 1974)

The processor’s system state, called the processor status word (PSW)
consists of the tuple (M, B, L, I,D.C): _hoek or whe wode

the execution level M = {s, u} (superuser or user mode) - hase
the segment register (B,L); (Segmented Memory Model) and L P

the current program counter (PC), a virtual address

A virtual machine monitor may be constructed if the set of sensitive
instructions for a computer is a subset of the set of privileged instructions.

{control-sensitive} U {behavior-sensitive} C {privileged}. be
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VIRTUALIZING THE GPU

Limited Direct Execution

How to handle privileged instructions (e.g., traps for system calls) ?
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BEFORE: SYSTEM CALL FLOW

Process P
——A\

RAM

movl $6, %eax; int $64

—_——

Transfer control to trap handler. Execute appropriate syscall routine



NEW: SYSTEM CALL

Process P

movl $6, %eax; int So64 Lugp  OS post P
L previlyd
P kel
Virtual Machine Monitor | hev \T/"
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USER MODE, KERNEL MODE?
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MIPS architecture: — S+
- Guest OS runs in “supervisor” mode —_ }w«@/(

- No privileged instructions, some extra memory
: o
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Run Guest OS in user mode
How to protect Guest OS data structures? A
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Log structured SSD consisting of 3 blocks and 10
pages per block. Each page holds a single
character.

The state of each page (i, v, or E), the data
stored at each page, and an indicator if a page is
currently live (i.e. has a mapping in the FTL).

* read(page#) -- if page is live returns the
character at the page, otherwise error

* write(page#,char) -- writes character to
logical page #

* erase(page#) -- removes logical page # from
the FTL mapping




FTL

Block
Page

State
Data
Live

FTL

Block
Page

State
Data
Live

0: 15 2: 18 3: 8
14: 16 “

0 1 2
0000000000 1111111111 2222222222
0123456789 0123456789 0123456789
VVVVVVVVVV yvvvvvvv%ﬁ)iiiiiiiiii
c9XhFAp970 CqFuArsJE

+  + ++ +

0: 15 2: 18 3: 8
14: 16

0 1 2
0000000000 1111111111 2222222222
0123456789 0123456789 0123456789
VVVVVVVVVV VVVVVVVVWY) 11111131111
c9XhFAp970 CqFuArs]

+ ++ ++
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If a write(_%:) is now performed by the OS on the SSD state from the last
question, what underlying SSD operations must be performed in order to
accomplish this write!?
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VIRTUALIZING MEMORY

Challenge:Who manages physical memory allocation?

Page Tolles
How do we share physical memory across Guest OSes!?
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OS Page Table VMM Page Table yM M

Extra level of

VPN 0 to PFN 10 PFN 03 to MFN 06
indirection! VPN 2 to PFN 03 PFN 08 to MFN 10
VPN 3 to PFN 08 PFN 10 to MFN 05
Virtual Address Space "Physical Memory" Machine Memory
0 0 0
1 1 1
2 2 2
3 3 3
4 4
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BEFORE: SOFTWARE TLB HANDLER

TLB miss in hardware

_, Th
Trap into OS

OS walks pagetable Vw’wi
Get Virtual-> Physical b

Update TLB using W‘“"J
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NEW: SOFTWARE TLB HANDLER
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TLB MISS OVERHEADS

Extra trap into VMM for Physical = Machine mapping

) fart ol
Avoid using Software “TLB"” in VMM to cache Virtual > Physical ~ 07%& babfen ,ffw
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Hardware managed TLBs

VMM maintains Shadow page table per of Virtual — Machine

Trap when OS tries to|update PTE (e.g., lcr3) " PTE
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S0, CAN WE VIRTUALIZE X867
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Table 2.2: List of sensitive, 86 instructions
Group ‘ Instructions

Access to interrupt flag pushf, popf, iret

Visibility into segment descriptors lar, verr, verw, lsl

Segment manipulation instructions | pop <seg>, push <seg>, mov <seg>
Read-only access to privileged state | sgdt, sldt, sidt, smsw

Interrupt and gate instructions fcall, longjump, retfar, str, int <n>




PARA VIRTUALIZATION, X86 EXTENSIONS

So far: No change to the guest OS. No changes to the hardware.
Downside: Overheads can be quite high?

Para virtualization

Can we make (small?) modifications to the guest OS for efficiency?

Hardware

Instruction set extensions (Intel, AMD)

R
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Modify guest OS: simply undefine all of the |7 non-virtualizable instructions!
Alternate interrupt architecture

‘ Memory Management
Segmentation | Cannot install fully privileged segment descriptors and cannot overlap with the
top end of the linear address space. —

—

<@ging Guest OS has @@to hardware page tables, but updates are \>

batched and validated by the hypervisor. A domain may be allocated di 1-
——— | uous machine (aka host-physical)

'CPU
Protection Guest OS must run at a lower privilege level than Xen.
Exceptions Guest OS must register a descriptor table for exception handlers with Xen.

Aside from page faults, the handler remains the same.
<S/)G;;m calls | Guest OS may install a “fast” handler for system calls, a]lowinm

from an application into its guest OS and avoiding indirection throughXe&L,>
~— every call. S




INTEL VT-X EXTENSIONS

True Hardware Support meeting Popek / Goldberg Criteria
Do not change the semantics of individual instructions, instead duplicate the

entire visible state and introduce a new mode of execution: the root mode.

Hypervisor is in root mode, Guest OS in non-root mode.

—

Special new instructions for detecting mode (only available in root mode,
otherwise a trap is caused).

New mode only used for virtualization
{Each mode has own address space cRy -

Each mode has own interrupt flag
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Host

Y root

A non-root

-

cpl 3

cpl 2

cpl 1

cpl 0

Hypervisor and/or Host Operating System
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Next class: Multi-CPU scheduling

Thanksgiving break!



