
ADVANCED TOPICS: VIRTUAL MACHINES

Shivaram Venkataraman
CS 537, Fall 2024

ADMINISTRIVIA

Project 5 happened?

Project 6 – last project!
 - Early deadline this week!
 - Final deadline end of next week

Shivaram office hours
 - TODAY at 1pm!

AGENDA / LEARNING OUTCOMES

How to virtualize a machine underneath the OS?

PERSISTENCE RECAP

• Managing I/O devices significant part of OS
• Disk Drives, SSDs (pages, blocks)

• File Systems: OS provided API to access disk
• Simple FS: FS layout with supberblock, bitmaps, inodes, datablocks

• Fast File System: Key idea – put inode & data close together, namespace locality
• FSCK, Journaling – Handling/Preventing data inconsistencies

• Log Structured File System - Organize data based on writes

VIRTUAL MACHINES

Operating System
(Linux)

CPU

gcc

Operating System
(Linux)

gcc

CPU

Operating System
(OS X)

Mem Mem

VIRTUAL MACHINE USE CASES

Share mainframe systems (1970s)

Cloud Computing
 - Consolidate multiple tenants running different OS
 - Strong Isolation

Run applications that only exist for specific OS
Testing, Debugging

DEFINITIONS
A virtual machine is a complete compute environment with its own isolated
processing capabilities, memory, and communication channels.

VIRTUAL MACHINE MONITORS

CPU Mem

Operating System
(Linux)

gcc

Operating System
(OS X)

Virtual Machine Monitor (Hypervisor)

Bare-metal Hypervisor (type-1)
direct control of all resources

Hosted Hypervisor (type-2)
operates as part of or on top of an
existing host OS

GOALS

• Equivalence – The exposed resource is equivalent with the underlying
computer.

• Safety – Isolation requires that the virtual machines are isolated from each
other as well as from the hypervisor.

• Performance – The virtual system must show at worst a minor decrease in
speed.

CAN WE VIRTUALIZE? (POPEK GOLDBERG 1974)
The processor’s system state, called the processor status word (PSW)
consists of the tuple (M, B, L, PC):
 the execution level M = {s, u} (superuser or user mode)
 the segment register (B,L); (Segmented Memory Model) and
 the current program counter (PC), a virtual address

A virtual machine monitor may be constructed if the set of sensitive
instructions for a computer is a subset of the set of privileged instructions.

VIRTUALIZING THE CPU

Limited Direct Execution

How to handle privileged instructions (e.g., traps for system calls) ?
Trap and Emulate!

BEFORE: SYSTEM CALL FLOW

RAM

Process P

sy
s_

re
ad

movl $6, %eax; int $64

sy
sc

al
l

Transfer control to trap handler. Execute appropriate syscall routine

NEW: SYSTEM CALL
Process P

sy
s_

re
ad

sy
sc

al
l

Virtual Machine Monitor

movl $6, %eax; int $64

USER MODE, KERNEL MODE?

MIPS architecture:
 - Guest OS runs in “supervisor” mode
 - No privileged instructions, some extra memory

Run Guest OS in user mode
 How to protect Guest OS data structures?

QUIZ 20
Log structured SSD consisting of 3 blocks and 10
pages per block. Each page holds a single
character.
The state of each page (i, v, or E), the data
stored at each page, and an indicator if a page is
currently live (i.e. has a mapping in the FTL).

• read(page#) -- if page is live returns the
character at the page, otherwise error

• write(page#,char) -- writes character to
logical page #

• erase(page#) -- removes logical page # from
the FTL mapping

If a write(0,'q') is now performed by the OS on the SSD state from the last
question, what underlying SSD operations must be performed in order to
accomplish this write?

VIRTUALIZING MEMORY

Challenge: Who manages physical memory allocation?
How do we share physical memory across Guest OSes?

Extra level of
indirection!

BEFORE: SOFTWARE TLB HANDLER

TLB miss in hardware

Trap into OS
OS walks pagetable

Get VirtualàPhysical
Update TLB using

privileged instruction

NEW: SOFTWARE TLB HANDLER

TLB miss

 Trap into VMM
Call OS Handler

OS walks pagetable
Get VirtualàPhysical

Update TLB using
privileged instruction

 Trap handler

Physical à Machine
 Update TLB

TLb MISS oVERHEADs

Extra trap into VMM for Physical à Machine mapping

Avoid using Software “TLB” in VMM to cache Virtual à Physical

Hardware managed TLBs
 VMM maintains Shadow page table per of Virtual à Machine
 Trap when OS tries to update PTE (e.g., lcr3)

So, CAN WE VIRTUALIZE x86?

PARA Virtualization, X86 Extensions

So far: No change to the guest OS. No changes to the hardware.
Downside: Overheads can be quite high?

Para virtualization
 Can we make (small?) modifications to the guest OS for efficiency?

Hardware
 Instruction set extensions (Intel, AMD)

XEN
Modify guest OS: simply undefine all of the 17 non-virtualizable instructions!
Alternate interrupt architecture

INTEL VT-X EXTENSIONS
True Hardware Support meeting Popek / Goldberg Criteria
Do not change the semantics of individual instructions, instead duplicate the
entire visible state and introduce a new mode of execution: the root mode.

• Hypervisor is in root mode, Guest OS in non-root mode.
• Special new instructions for detecting mode (only available in root mode,

otherwise a trap is caused).
• New mode only used for virtualization
• Each mode has own address space
• Each mode has own interrupt flag

Next class: Multi-CPU scheduling

Thanksgiving break!

