
CONCURRENCY: DATA STRUCTURES

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Spring break!

AGENDA / LEARNING OUTCOMES

Concurrency: How to build concurrent data structures?

Summary of virtualization, concurrency

RECAP

Concurrency Objectives

Mutual exclusion (e.g., A and B don’t run at same time)
 solved with locks

Ordering (e.g., B runs after A does something)

 solved with condition variables and semaphores

ABSTRACTIONS

Objects, Lists, Hashtable

Semaphores
Locks, Condition variables

Atomic Primitives

Concurrent DATA STRUCTURES

Concurrent Data structures

Counters
Lists
Hashtable
Queues

Start with a correct solution
Make it perform better!

WHAT IS SCALABILITY

N times as much work on N cores as done on 1 core

Strong scaling
Fix input size, increase number of cores

Weak scaling
Increase input size with number of cores

COUNTERS

1	typedef	struct	__counter_t	{		
2			int	value;		
3	}	counter_t;		
4	
5	void	init(counter_t	*c)	{		
6  	c->value	=	0;	
7  }	
8  void	increment(counter_t	*c)	{	
9  	c->value++;	
10  }	
11  int	get(counter_t	*c)	{		
12  		return	c->value;	19		
13  }	

THREAD SAFE COUNTER

1	typedef	struct	__counter_t	{	
2			int	value;	
3			pthread_mutex_t	lock;	
4	}	counter_t;	
5	
…	
10	
11	void	increment(counter_t	*c)	{	
12			Pthread_mutex_lock(&c->lock);	
13			c->value++;	
14			Pthread_mutex_unlock(&c->lock);	
15	}	

COUNTER SCALABILITY DEMO

UNDERLYING PROBLEM?

An Analysis of Linux
Scalability
to Many Cores

Boyd-Wickizer et. al
OSDI 2010

APPROXIMATE COUNTERS

Maintain a counter per-core, global counter
Global counter lock
Per-core locks if more than 1 thread per-core?

Increment:

 update local counters
 at threshold update global

Read:

 global counter (maybe inaccurate?)

DEMO

CONCURRENT LINKED LIST
18	void	List_Insert(list_t	*L,	int	key)	{	
19  		pthread_mutex_lock(&L->lock);	
20  		node_t	*new	=	malloc(sizeof(node_t));	
21			if	(new	==	NULL)	{	
22					perror("malloc");	
23					pthread_mutex_unlock(&L->lock);	
24					return;	//	fail	
25			}	
26			new->key	=	key;	
27			new->next	=	L->head;	
28			L->head	=	new;	
29			pthread_mutex_unlock(&L->lock);	
30			return;	//	success	
31	}	

BETTER CONCURRENT LINKED LIST?
18	void	List_Insert(list_t	*L,	int	key)	{	
19  		node_t	*new	=	malloc(sizeof(node_t));	
21			if	(new	==	NULL)	{	
22					perror("malloc");	
23					pthread_mutex_unlock(&L->lock);	
24					return;	//	fail	
25  		}	

26			new->key	=	key;	
27			new->next	=	L->head;	
28			L->head	=	new;	
29			pthread_mutex_unlock(&L->lock);	
30			return;	//	success	
31	}	

DEMO

HASH TABLE FROM LIST

1	#define	BUCKETS	(101)		
2	typedef	struct	__hash_t	{	
3  		list_t	lists[BUCKETS];	
4  }	hash_t;	
5  		
6  int	Hash_Insert(hash_t	*H,	int	key)	{	
7  		int	bucket	=	key	%	BUCKETS;		
8  		return	List_Insert(&H->lists[bucket],	key);	
9  	}	
10  		

DEMO

CONCURRENT DATA STRUCTURES

Simple approach: Add a lock to each method?!

Check for scalability – weak scaling, strong scaling

Avoid cross-thread, cross-core traffic

 Per-core counter

 Buckets in hashtable

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

1. Virtualization

2. Concurrency

3. Persistence

VIRTUALIZATION

Make each application believe it has each resource to itself
CPU and Memory

Abstraction: Process API, Address spaces
Mechanism:

 Limited direct execution, CPU scheduling
 Address translation (segmentation, paging, TLB)

Policy: MLFQ, LRU etc.

CONCURRENCY

Events occur simultaneously and may interact with one another
Need to

 Hide concurrency from independent processes
 Manage concurrency with interacting processes

Provide abstractions (locks, semaphores, condition variables etc.)
Correctness: mutual exclusion, ordering
Performance: scaling data structures, fairness
Common Bugs!

NEXT STEPS

Spring break!

