\
o
CONCURRENCY: DEADLOCK

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Midterm is on Wednesday 3/13 at 5.15pm, details on Piazza
Y—
Venue: If your last name starts with A-L, go to VanVleck B102
else (last name starts with M-Z), go to VanVleck B130#

Bring your ID! Calculators allowed, no cheat sheet

Review session; Office hours at 5.30pm at Noland Hall, Room 132

Fill out mid semester course evaluation? https://aefis.wisc.edu/

AGENDA / LEARNING OUTCOMES

Concurrency
What are common pitfalls with concurrent execution?

RECAP

CONGURRENGY OBJECTIVES

Mutual exclusion (e.g,,A and B don’t run at same time)
solved with locks ‘

Ordering (e.g., B runs after A does something)

solved with condition variables and semaphores

SUMMARY: GONDITION VARIABLES

wait(cond_t *cv, mutex_t *lock)
- assumes the lock is held when wait() is called
- puts caller to sleep + releases the lock (atomically)

- when awoken, reacquires lock before returning

signal(cond_t *cv)
- wake a single waiting thread (if >= | thread is waiting)

- if there is no waiting thread, just return, doing nothing

SUMMARY: SEMAPHORES

Semaphores are equivalent to locks + condition variables

— Can be used for both mutual exclusion and ordering
Semaphores contaln. — ka{ NS N

— How they are initialized depends on how they will be used &5;’7

— Init to O@(I thread must arrive first, then other) A

— In|t to N: Number of available resources \000\L

iy o V\ /\Q}(
R N P

sem_ wait(): Decrement and walt@value <0
sem_post() or sem_signal(): Increment value, then wake a single waiter (atomic)

Can use semaphores in producer/consumer and for reader/writer locks

CONGURRENCY BUGS

CONCURRENCY STUDY

B Atomicity ® Order ¥ Deadlock ¥ Other
75

Bugs
— W XN
S

o U

MySQL Apache Mozilla OpenOffice

Lu etal. [ASPLOS 2008]:

For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

FIX ATOMICITY BUGS WITH LOCKS

Thread 1: Thread 2:

pthr ockT&Ejfﬁg;
hd- >proc info = NUL

pthread_mutex_unlock(&lock);

fputs(thd—>proc_info,)}

Y Vv N D
} o g X \@(YT
A L
pthread_mutex_unlock(&lock); \} ng
\

FIX ORDERING BUGS WITH GONDITION VARIABLES

N\ O~
i
Thread 1: Thread 2:

void init() {
void mMain(..) {

mThread =

PR _CreateThread(mMain, ..); mutex_Lock(&mtLocR);

while (mtInit == 0)
pthread _mutex Lock(&mtLock); Cond&thond, &mtLock);
mtIinit = 1; Mutex _untock(&mtLocR);
pthr'ead_cond&thond); —
pthread _mutex_unmtock(&mtLocR); mState =[@Thread—>§£§§g;l

DEADLOCK

No progress can be made because two or more threads are waiting
for the other to take some action and thus neither ever does

CODE EXAMPLE

Thread |: | Thread 2:

lock(&A); | o lock(&B);
lock(&B); lock(&A);

CIRCULAR DEPENDENCY

@ holds A
wanted wanted
by by

holds @

Lock B

FIX DEADLOCKED GODE

Thread 1: Thread 2:
lock(&A); lock(&B);
lock(&B); lock(&A);
Thread 1 Thread 2
Iock CM7/‘ locle (LA)/

et (k) fock (40

NON-CIRCULAR DEPENDENCY

set t *set_intersection (set t *sl1, set t *s2) {

set t *rv = mal iiEB?Z;FVS);Czrfﬂ—__d_T/\ T 'L
mutex_ lock(&s1l->1oc ;// - ‘ \
mutex_lock(&s2->Iock); / SP.ALQ/X §W-§Zfﬂg
for(int 1=0; i<sl->len; i++) { g1/= pUPED G2~ QZkA\

if(set_contains(s2, sl1->items[i])

set_add(rv, sl->items[i]); CDV}} \Mz;ﬁ&gh

mutex_unlock(&s2->1lock);
mutex_unlock(&sl—>lock)%/ k? >

Thread 1: rv
Thread 2: rv

set_inter'sectios

set_intersection(setB, setA);

ENCAPSULATION o

B}{W %}“ Modularity can make it harder to see deadlocks

(Solution? ~—]
gr*a; locks in high-to-low address order - /_/

pthread_mutex_lock(ml); -

pthread mutex lock(m2); ./ ;\r \

} else { \ ot ‘y\q\ |
pthread_mutex lock(m2); \Nﬂ/ <v0 \ r\’ﬂ/]
pthread mutex_ lock(ml); N ‘Jﬁiw A -

) g >

DEADLOCK THEORY

Deadlocks can only happen with these four conditions:
|. mutual exclusion

2. hold-and-wait

3. no preemption

4. circular wait

Can eliminate deadlock by eliminating any one condition

1. MUTUAL EXCLUSION

Problem:Threads claim exclusive control of resources that they require

Strategy: Eliminate locks!
Try to replace locks with atomic primitive:

int CompareAndSwap(int *address, int expected, int new) {
if (*address == expected) {
*address = new;
return 1; // success A (\

}

return 0; // failure

. ”
J . ‘l_l i .) - - »
- k4 ? > 5

-

https://tinyurl.com/cs537-sp 19

" o B ‘

https://tinyurl.com/cs537-sp | 9-bunny9

void add (intl*val, int amt) {
Mutex_lock(&m); _
*val += amt;
Mutex_unlock(&m);

BUNNY

int CompareAndSwap(int(*address,
int expected, int new) {
if (*address == expected) { %W}
*address = new;
return 1; // success S

}
return 0; // failurerfcgh

} &

void add (int (*val, int amt) {
do {

int old = *valwe;

} while(!CompAndSwap(/a , old, 0d);

}

WAIT-FREE ALGORITHM: LINKED LIST INSERT

void insert (int val) { void insert (int val) {

node_t *n = Malloc(sizeof(*n)); node t *n = Malloc(sizeof(*n));

n->val = val; nh->val = val;

lock(&m); do {

n->next = head; n->next = head;

head = n; } while (!CompAndSwap(&head,

unlock(&m); §;> n->next, n));
} 3

2. HOLD-AND-WAIT - ﬂidim&%;\x\x\ L

e (L/\/Onc/[ﬁ 0),
Problem:Threads hold resources allocated to them while waiting for additionaIU
Lo el

resources

Strategy: Acquire all locks atomically once. Can release locks over time, but
cannot acquire again until all have been
e

focle v
Disadvantages!?

Ll e\

W AT
)

How to do this? Use a meta lock:

trylock

LSO 3 NOPREEMPTION s7e

T2 Lot le s
mu) Loz LYI8F

Problem: Resources (e.g., locks) cannot be forcibly removed from threads that are

~ -

Strategy: if thread can’t get what it wants, release what it holds

top: \ “ g e
lock (A); ¢ 1 Uy
if<(trylock(B) ==(-1) { Disadvantages?
unlock(A);
/ 3
goto top; . /M, . pc A A
} &Y% bt ke @C i
—% \ 0wk ® ek d
S AR 12— 7 leerd, kDo
PR g |
?) OJX(/(Q) ,&ck/; X

Ond® % back s

4. CIRCULAR WAIT

Circular chain of threads such that each thread holds a resource (e.g., lock)
being requested by next thread in the chain.

Strategy:
- decide which locks should be acquired before others

- if A before B, never acquire A if B is already held! : é\(
- document this, and write code accordingly \o W O‘W
Vo e oW
Works well if system has distinct layers (5 "
< M

VRN

CONGURRENCY SUMMARY SO FAR

Motivation: Parallel programming patterns, multi-core machines

/"Abstractions, Mechanisms

- Spin Locks, Ticket locks
= Queue locks

- Condition variables

- Semaphores

Concurrency Bugs (

MIDTERM REVIEW

