
CONCURRENCY: DEADLOCK

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Midterm is on Wednesday 3/13 at 5.15pm, details on Piazza
Venue: If your last name starts with A-L, go to VanVleck B102
 else (last name starts with M-Z), go to VanVleck B130

Bring your ID! Calculators allowed, no cheat sheet
Review session, Office hours at 5.30pm at Noland Hall, Room 132

Fill out mid semester course evaluation? https://aefis.wisc.edu/

AGENDA / LEARNING OUTCOMES

Concurrency
 What are common pitfalls with concurrent execution?

RECAP

Concurrency Objectives

Mutual exclusion (e.g., A and B don’t run at same time)
 solved with locks

Ordering (e.g., B runs after A does something)

 solved with condition variables and semaphores

SUMMARY: CONDITION VARIABLES

wait(cond_t *cv, mutex_t *lock)
 - assumes the lock is held when wait() is called
 - puts caller to sleep + releases the lock (atomically)

 - when awoken, reacquires lock before returning

signal(cond_t *cv)

 - wake a single waiting thread (if >= 1 thread is waiting)

 - if there is no waiting thread, just return, doing nothing

SUMMARY: Semaphores

Semaphores are equivalent to locks + condition variables
–  Can be used for both mutual exclusion and ordering

Semaphores contain state
–  How they are initialized depends on how they will be used
–  Init to 0: Join (1 thread must arrive first, then other)
–  Init to N: Number of available resources

sem_wait(): Decrement and waits IF value < 0
sem_post() or sem_signal(): Increment value, then wake a single waiter (atomic)
Can use semaphores in producer/consumer and for reader/writer locks

CONCURRENCY BUGS

Lu etal. [ASPLOS 2008]:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency bugs.

0

15

30

45

60

75

MySQL Apache Mozilla OpenOffice

B
ug

s

Atomicity Order Deadlock Other

Concurrency Study

Fix Atomicity Bugs with Locks

Thread 1:!
pthread_mutex_lock(&lock); !
if (thd->proc_info) { !
 … !
 fputs(thd->proc_info, …); !
 … !
} !
pthread_mutex_unlock(&lock); !

Thread 2: !
!
pthread_mutex_lock(&lock); !
thd->proc_info = NULL; !
pthread_mutex_unlock(&lock); !

Fix Ordering bugs with Condition variables

Thread	2:	
	
void	mMain(…)	{	
		…	
	
		mutex_lock(&mtLock);	
		while	(mtInit	==	0)	
				Cond_wait(&mtCond,	&mtLock);	
		Mutex_unlock(&mtLock);	
	
		mState	=	mThread->State;	
		…	
}	

Thread	1:	
void	init()	{	

	…	
	

	mThread	=			 			 			 			 						 	
	PR_CreateThread(mMain,	…);	

	 		
	pthread_mutex_lock(&mtLock);	

		 	mtInit	=	1;	
		 	pthread_cond_signal(&mtCond);	
		 	pthread_mutex_unlock(&mtLock);	
			

	…	
}	

Deadlock

No progress can be made because two or more threads are waiting
for the other to take some action and thus neither ever does

Code Example

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

Fix Deadlocked Code

Thread	2	
	

Thread	1	
	

Thread	2:	
	
lock(&B);	
lock(&A);	

Thread	1:	
	
lock(&A);	
lock(&B);	

Non-circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

set_t	*set_intersection	(set_t	*s1,	set_t	*s2)	{	
	set_t	*rv	=	malloc(sizeof(*rv));	
	mutex_lock(&s1->lock);	
	mutex_lock(&s2->lock);	
	for(int	i=0;	i<s1->len;	i++)	{	
	 	if(set_contains(s2,	s1->items[i])	
	 	 	set_add(rv,	s1->items[i]);	
	mutex_unlock(&s2->lock);	
	mutex_unlock(&s1->lock);	

}	

Thread	1:	rv	=	set_intersection(setA,	setB);	

Thread	2:	rv	=	set_intersection(setB,	setA);	

Encapsulation
Modularity can make it harder to see deadlocks

Solution?

if	(m1	>	m2)	{		
	//	grab	locks	in	high-to-low	address	order	
	pthread_mutex_lock(m1);		
	pthread_mutex_lock(m2);		

}	else	{		
	pthread_mutex_lock(m2);		
	pthread_mutex_lock(m1);		

}	

Any other problems?

Deadlock Theory

Deadlocks can only happen with these four conditions:
 1. mutual exclusion
 2. hold-and-wait
 3. no preemption
 4. circular wait

Can eliminate deadlock by eliminating any one condition

1. Mutual Exclusion

Problem: Threads claim exclusive control of resources that they require
Strategy: Eliminate locks!
Try to replace locks with atomic primitive:	
	
int	CompareAndSwap(int	*address,	int	expected,	int	new)	{	
	if	(*address	==	expected)	{	
	 	*address	=	new;	
	 	return	1;	//	success	

			}	
			return	0;	//	failure		
}	

BUNNY https://tinyurl.com/cs537-sp19-bunny9

BUNNY
void	add	(int	*val,	int	amt)	{	

	Mutex_lock(&m);	
	*val	+=	amt;	
	Mutex_unlock(&m);	

}	

void	add	(int	*val,	int	amt)	{	
	do	{	

		int	old	=	*value;	
	}	while(!CompAndSwap(___,	___,___);	

}	

int	CompareAndSwap(int	*address,			
			int	expected,	int	new)	{	

		if	(*address	==	expected)	{	
	 	*address	=	new;	
	 	return	1;	//	success	

			}	
			return	0;	//	failure		
}	

https://tinyurl.com/cs537-sp19-bunny9

Wait-Free Algorithm: Linked List Insert

void	insert	(int	val)	{	
	node_t	*n	=	Malloc(sizeof(*n));	
	n->val	=	val;	
	lock(&m);	
	n->next	=	head;	
	head	=	n;	
	unlock(&m);	

}	

void	insert	(int	val)	{	
	node_t	*n	=	Malloc(sizeof(*n));	
	n->val	=	val;	
	do	{	
	 	n->next	=	head;	
	}	while	(!CompAndSwap(&head,		

																				n->next,	n));	
}	

2. Hold-and-Wait
Problem: Threads hold resources allocated to them while waiting for additional
resources
Strategy: Acquire all locks atomically once. Can release locks over time, but
cannot acquire again until all have been released
How to do this? Use a meta lock:

Disadvantages?

3. No preemption

Problem: Resources (e.g., locks) cannot be forcibly removed from threads that are
Strategy: if thread can’t get what it wants, release what it holds

top:	

	lock(A);	
	if	(trylock(B)	==	-1)	{	
	 	unlock(A);	
	 	goto	top;	
	}	
	…	

Disadvantages?

4. Circular Wait

Circular chain of threads such that each thread holds a resource (e.g., lock)
being requested by next thread in the chain.

Strategy:
 - decide which locks should be acquired before others
 - if A before B, never acquire A if B is already held!
 - document this, and write code accordingly

Works well if system has distinct layers

CONCURRENCY SUMMARY SO FAR

Motivation: Parallel programming patterns, multi-core machines

Abstractions, Mechanisms

 - Spin Locks, Ticket locks
 - Queue locks
 - Condition variables
 - Semaphores

Concurrency Bugs

MIDTERM REVIEW

