
DISTRIBUTED SYSTEMS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 5: Due April 29. Last Project!
Final Exam: Everything before the last lecture
Discussion today: Worksheet on topics after midterm

Peer mentors for next semester! https://forms.gle/h7zXQidTP4QxiwVD8

AGENDA / LEARNING OUTCOMES

What are the design principles for systems that operate across machines?

How to handle partial failures?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces

1. Virtualization

2. Concurrency

3. Persistence

DISTRIBUTED SYSTEMS

HOW DOES GOOGLE SEARCH WORK?

What is a Distributed System?

A distributed system is one where a machine I’ve never heard of can cause my program to fail.
— Leslie Lamport

Definition: More than one machine working together to solve a problem

Examples:
–  client/server: web server and web client
–  cluster: page rank computation

Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

New Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable
-  bit errors
-  packet loss
-  node/link failure

Why are network sockets less reliable than pipes?

Communication Overview

Raw messages: UDP
Reliable messages: TCP
Remote procedure call: RPC

Raw Messages: UDP

UDP : User Datagram Protocol
API:
 - reads and writes over socket file descriptors
 - messages sent from/to ports to target a process on machine

Provide minimal reliability features:
 - messages may be lost
 - messages may be reordered
 - messages may be duplicated
 - only protection: checksums to ensure data not corrupted

Raw Messages: UDP

Advantages
–  Lightweight
–  Some applications make better reliability decisions themselves (e.g., video

conferencing programs)

Disadvantages
–  More difficult to write applications correctly

Reliable Messages: Layering strategy

TCP: Transmission Control Protocol

Using software to build

 reliable logical connections over unreliable physical connections

Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Ack: Sender knows message was received
What to do about message loss?

Technique #2: Timeout

Sender
[send message]
[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

TIMEOUT

How long to wait?

Too long?
–  System feels unresponsive

Too short?
–  Messages needlessly re-sent
–  Messages may have been dropped due to overloaded server. Resending makes

overload worse!

LOST ACK PROBLEM

Sender
[send message]

[timeout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

SEQUENCE NUMBERS

Sequence numbers
 - senders gives each message an increasing unique seq number
 - receiver knows it has seen all messages before N

Suppose message K is received.
 - if K <= N, Msg K is already delivered, ignore it
 - if K = N + 1, first time seeing this message
 - if K > N + 1 ?

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order
Timeouts are adaptive

Communications Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

RPC
int main(…) {

 int x = foo(”hello”);
}

int foo(char *msg) {

 send msg to B
 recv msg from B

}

Machine A
int foo(char *msg) {

 …
}

void foo_listener() {

 while(1) {
 recv, call foo
 }

}

Machine B

RPC
int main(…) {

 int x = foo(”hello”);
}

int foo(char *msg) {

 send msg to B
 recv msg from B

}

Machine A
int foo(char *msg) {

 …
}

void foo_listener() {

 while(1) {
 recv, call foo
 }

}

Machine B

client
wrapper

server
wrapper

RPC Tools

RPC packages help with two components
(1) Runtime library

–  Thread pool
–  Socket listeners call functions on server

(2) Stub generation
–  Create wrappers automatically
–  Many tools available (rpcgen, thrift, protobufs)

Wrapper Generation

Wrappers must do conversions:
 - client arguments to message
 - message to server arguments
 - convert server return value to message
 - convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[tcp send]

BREAK! NO QUIZ!

Course feedback: https://aefis.wisc.edu

DISTRIBUTED SYSTEMS IN PRACTICE

DISTRIBUTED SYSTEMS

Classic systems, algorithms

 Grapevine: An exercise in distributed computing
 Andrew Birrell Roy Levin Roger M. Needham Mike Schroeder
 Communications of the ACM | April 1982, Vol 25

Time, Clocks, and the Ordering of Events in a Distributed System
L. Lamport
Communications of the ACM
Vol. 21, No. 7 (July 1978)

CS 739

Google 1997

Data, Data, Data

“…Storage space must be used efficiently to store
indices and, optionally, the documents themselves.
The indexing system must process hundreds of
gigabytes of data efficiently…”

Commodity CPUs

Lots of disks

Low bandwidth network

Google 2001

Cheap !

Datacenter Evolution

Facebook’s daily logs: 60 TB

Google web index: 10+ PB

0

5

10

15

2010 2011 2012 2013 2014 2015

Moore's Law

Overall Data

(IDC report*)

Datacenter Evolution

Google data centers in The Dalles, Oregon

Datacenter Evolution

Capacity:
~10000 machines

Bandwidth:
12-24 disks per node

Latency:
256GB RAM cache

Jeff Dean @ Google

MAPREDUCE

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:

(Kin, Vin) à list(Kinter, Vinter)

Reduce function:
(Kinter, list(Vinter)) à list(Kout, Vout)

Example: Word Count

def mapper(line):
 for word in line.split():
 output(word, 1)

def reducer(key, values):
 output(key, sum(values))

Word Count Execution

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1
quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Word Count Execution

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Automatically
split work

Schedule tasks
with locality

JobTracker
Submit a Job

Fault Recovery
If a task crashes:

–  Retry on another node
–  If the same task repeatedly fails, end the job

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Fault Recovery
If a task crashes:

–  Retry on another node
–  If the same task repeatedly fails, end the job

Requires user code to be deterministic

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

Fault Recovery

If a node crashes:
–  Relaunch its current tasks on other nodes
 What about task inputs ? File system replication

the quick
brown fox

Map Map

the fox ate
the mouse

Map

how now
brown
cow

the quick
brown fox

Map

Fault Recovery

If a task is going slowly (straggler):
–  Launch second copy of task on another node
–  Take the output of whichever finishes first

the quick
brown fox

 Map

the fox ate
the mouse

Map

how now
brown
cow

NEXT STEPS

Next class: Distributed Filesystem(NFS)

Discussion this week: Worksheet and review, Q&A for P5

