DISTRIBUTED SYSTEMS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 5: Due April 29. Last Project!
Final Exam: Everything before the last lecture

Discussion today:Worksheet on topics after midterm

Peer mentors for next semester! https://forms.gle/h7zXQidTP40QxiwVD8

AGENDA / LEARNING OUTCOMES

What are the design principles for systems that operate across machines?

How to handle partial failures?

RECAP

OPERATING SYSTEMS: THREE EASY PIECES

Three conceptual pieces
| .Virtualization
2. Concurrency

3. Persistence

DISTRIBUTED SYSTEMS

HOW DOES GOOGLE SEARCH WORK?

Google Search I'm Feeling Lucky

WHAT IS A DISTRIBUTED SYSTEM?

A distributed system is one where a machine I've never heard of can cause my program to fail.
— Leslie Lamport

Definition: More than one machine working together to solve a problem

Examples:
— client/server: web server and web client

— cluster: page rank computation

WHY GO DISTRIBUTED?

More computing power
More storage capacity
Fault tolerance

Data sharing

NEW CHALLENGES

System failure: need to worry about partial failure

Communication failure: links unreliable
- bit errors
- packet loss

- node/link failure

Why are network sockets less reliable than pipes!?

COMMUNICATION OVERVIEW

Raw messa ges: UDP
Reliable messages: TCP

Remote procedure call: RPC

RAW MESSAGES: UDP

UDP : User Datagram Protocol
API:
- reads and writes over socket file descriptors

- messages sent from/to ports to target a process on machine

Provide minimal reliability features:

- messages may be lost

- messages may be reordered

- messages may be duplicated

- only protection: checksums to ensure data not corrupted

RAW MESSAGES: UDP

Advantages
— Lightweight
— Some applications make better reliability decisions themselves (e.g., video
conferencing programs)

Disadvantages

— More difficult to write applications correctly

RELIABLE MESSAGES: LAYERING STRATEGY

TCP: Transmission Control Protocol

Using software to build

reliable logical connections over unreliable physical connections

TECHNIQUE #1: ACK

Sender Receiver
[send message] —_

— [recv message]
[send ack]

<
4

[recv ack]

Ack: Sender knows message was received
What to do about message loss!?

TECHNIQUE #2: TIMEQUT

Sender Receiver
[send message] —/ X
[start timer]

... waiting for ack ...

[timer goes off]
[send message] —

— [recv message]
— [send ack]

[recv ack] «

TIMEQUT

How long to wait?

Too long!?

— System feels unresponsive

Too short!?
— Messages needlessly re-sent

— Messages may have been dropped due to overloaded server. Resending makes
overload worse!

LOST ACK PROBLEM

Sender Receiver
[send message] —

‘i [recv message]
W — — [send ack]

[timeout]
[send message] —

‘iessage]

— [send ack]

[recv ack] -~

SEQUENCE NUMBERS

Sequence numbers
- senders gives each message an increasing unique seq number

- receiver knows it has seen all messages before N

Suppose message K is received.
- if K <= N, Msg K is already delivered, ignore it
- if K= N + [, first time seeing this message
-ifK>N+ 12

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order

Timeouts are adaptive

COMMUNICATIONS OVERVIEW

Raw messages: UDP
Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call
What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

RPC

Machine A Machine B
int main(...) { int foo(char *msg) {
int x = foo(”’hello”);
} }
int foo(char *msg) { void foo_listener() {
send msg to B while(1) {
recv msg from B recy, call foo
} }

client
wrapper

Machine A

int main(...) {

}

int x = foo("’hello”);

-
int foo(char *msg) {

W

send msg to B
recv msg from B

RPC

Machine B

int foo(char *msg) {

}

7

void foo_listener() {

J

while(l) {
recy, call foo

}

server
wrapper

RPG TOOLS

RPC packages help with two components
(1) Runtime library
— Thread pool

— Socket listeners call functions on server

(2) Stub generation
— Create wrappers automatically

— Many tools available (rpcgen, thrift, protobufs)

WRAPPER GENERATION

Wrappers must do conversions:

- client arguments to message

- message to server arguments

- convert server return value to message

- convert message to client return value

Need uniform endianness (wrappers do this)

Conversion is called marshaling/unmarshaling, or serializing/deserializing

WRAPPER GENERATION: POINTERS

Why are pointers problematic?
Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

RPG OVER TCP?

Sender Receiver
[call]
[tcp send]—
—[recv]
_________________ [ack]
D [exec call]
[return]

—[tcp send]

RPG OVER UDP

Strategy: use function return as implicit ACK
Piggybacking technique

What if function takes a long time?

then send a separate ACK

Sender Receiver
[call]
[udp send
l\>[recv]
[exec call]
[return]

/tcp send]

[recv]

BREAKINO QUIZ!

Course feedback: https://aefis.wisc.edu

DISTRIBUTED SYSTEMS IN PRACTIGE

DISTRIBUTED SYSTEMS

Classic systems, algorithms

Grapevine: An exercise in distributed computing CS 739
Andrew Birrell Roy Levin Roger M. Needham Mike Schroeder
Communications of the ACM | April 1982,Vol 25

Time, Clocks, and the Ordering of Events in a Distributed System
L. Lamport

Communications of the ACM

Vol. 21, No. 7 (July 1978)

GOOGLE 1997

QPR TURRIN <

DATA, DATA, DATA

“...Storage space must be used efficiently to store
indices and, optionally, the documents themselves.
The indexing system must process hundreds of
gigabytes of data efficiently...”

The Anatomy of a Large-Scale Hypertextual
Web Search Engine

Sergey Brin and Lawrence Page

GOOGLE 2001

Commodity CPUs

Lots of disks

Low bandwidth network

Cheap !

DATAGENTER EVOLUTION

--Moore's Law

-®-Qverall Data

Facebook’s daily logs: 60 TB 10

Google web index: 10+ PB

0
2010 2011 2012 2013 2014 2015
(IDC report*)

DATAGENTER EVOLUTION

Google data centers in The Dalles, Oregon

DATAGENTER EVOLUTION

Capacity:
~]10000 machines

Bandwidth: Latency:
12-24 disks per node 256GB RAM cache

Outage in Dublin Knocks Amazon, Microsoft Data
Centers Offline

By:

Dallas-Fort Worth Data Center Update K2
|‘ z‘r:EJduir:f gth, 2009 by Lanham Napier

E W Tweet {0 (3 share C Ofﬂc|a| Gma” B|Og

Alic News, tips and tricks from Google's Gmail
team and friends.

for / Message from Rackspace CEO L:
mar July 9, 2009

Micr Rackspace Community.

- Some of our customers have been d

Worth Data Center Others of youm: MoOre on today's Gmail issue
interruption like this is not up toourl

such incidents from occurring in the ' posted: Tu

people rel
3 problem v

xdwere Aazon EC2 and Amazon RDS Service Disruption

“ M alist of th

The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packetloss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Long distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

JEFF DEAN @ GOOGLE

MAPREDUCE

PROGRAMMING MODEL

Data type: Each record is (key, value)

Map function:
(K'n’vin) 9 IiSt(Kinter’vinter)

Reduce function:
(Kinter’ IiSt(Vinter)) 9 IiSt(Kout’vout)

EXAMPLE: WORD COUNT

def mapper(line):
for word in line.split():
output(word, 1)

def reducer(key, values):
output(key, sum(values))

Input

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

—

WORD COUNT EXECUTION

Map Shuffle & Sort

the, |
brown, |

Reduce

]

—

Output

brown, 2
fox, 2
how, |
now, |
the, 3

ate, |
cow, |
mouse, |
quick, |

WORD COUNT EXECUTION

Submit a Job

JobTracker
Schedule tasks

Automatically with locality

split wor

the quick the fox ate how now
use

FAULT RECOVERY

If a task crashes:
— Retry on another node

— If the same task repeatedly fails, end the job

" Map

A

" Map

how now

the quick
b fox

FAULT RECOVERY

If a task crashes:
— Retry on another node

— If the same task repeatedly fails, end the job

| Map_ | Map

how now

the quick

fox

Requires user code to be deterministic

FAULT RECOVERY

If 2 node crashes:
— Relaunch its current tasks on other nodes

What about task inputs ? File system replication

" Map

how now

FAULT RECOVERY

If a task is going slowly (straggler):
— Launch second copy of task on another node

— Take the output of whichever finishes first

vep =3

the quick the quick the fox ate
fox

| Map

how now

NEXT STEPS

Next class: Distributed Filesystem(NFS)

Discussion this week:Worksheet and review, Q&A for P5

