LFS, DISTRIBUTED SYSTEMS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 5: Due April 29. Last Project!

Project 4a, 4b grading update

Regrades status
l__/—’?

Peer mentors for next semester! https://forms.gle/h7zXQidTP4QxiwVD8

COURSE FEEDBACK

https://aefis.wisc.edu

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

What are the design principles for systems that operate across machines?

RECAP

C e Spfe 0 ESSTRUCTS

G ot e W

N T i
BHENSc-ININRNENDN

0 7
DIDIDIDIDIDAIDID
16 23
DIDIDJDIDIDAIDID
32 39
DIDIDIDIDIDAIDID
48 55

C’\(o \ﬂ \g:,\‘?

Dok
mmﬁmmmmm
8 |5
DIolololololo]D!
24 31
REGEEGEER
40 47
Dlolololololo]o!
56 63

CRASH CONSISTENCY SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK:
Fix file system image after crash happens

Too slow and only ensures consistency

Write a transaction before in-place updates
Checksum, batching

Ordered journal avoids data writes

LOG STRUCTURED FILE SYSTEM (LFS)

LFS PERFORMANCE GOAL

(o e

Motivation: Anﬂ‘
— Growing gap between sequential and random I/O performance
— RAID-5 especially bad with small random writes

w\\&) g TN —

|dea: use disk purely sequentially

Design for writes to use disk sequentially — how?

e WRITES .

O

il |
g:t 0} ﬁo\ blk[0]:A5
1]:A1
Dy Dy Dy Dy g:‘ﬁ A2 || Do
\ S —_— - ——

/ nodelj] 5?9 \/_W
/\/\/

Z& U

\D [

* Y

U IMAPEXPLANED

— b’k[O] A0 \C = 5 /i?
- &,
D | @\ k ,L\ \) o
Ie Yo SR IVie
A0 @ D @
| - ,
bIIk[O]:AO ";!EM_ . [ow :’ID\A‘? ‘),«/Jo(fuis
D I[k] | ima s
“ 4. A}p n _Ma,“{’A

A0

At

CHECKPOINT REGION

How do we find the imap, given pieces of it are also spread across the disk?

Checkpoint Region (CR):
fixed region at say start of the disk
pointers to the latest pieces of the inode map
Updated every 30s or so, performance is not affected

o

READING INLFS

CYQ—QJ(C /4:/%/;
Al

1

0 (\ A0 IN A2

|. Read i ion
2. Read all imap parts, cache in mem

3. To read a file: L% nsbe i
|. Lookup inode location in imap
2. Read inode
3. Read the file block

|

BUNNY 20

https://tinyurl.com/cs537-sp | 9-bunnydé i{)

You are given the traffic stream of writes to disk performed by LFS.
Before these writes, you can assume the file system only had a w
You can also assume that a single inode takes up an entire block.

(a) Segment written starting at disk address 100, in a segment of size 4: c("ﬂk ‘
GRS A
block(200¢ [("." 0), (".." 0), "foo'l1y1 // a data block ’& O&Q,/gov /
lock 101: [sTze=1,ptr=100, type=d] // an inode A &Q,(};00
ck [I0Z2l: [size=0, ptr—— type= r] - 9)0:,},,,\ // an inode /L/“’A‘Q
block 103: [imap: Q_ >101 >102] // a piece of the imap

—
—

What file system operation(s) led to this segment write?

C aate / oo

BUNNY 20

https://tinyurl.com/cs537-sp19-bunny |9

(b) Segment written to disk address 104, in a segment of size 4:

block 104: [SOME DATA] (— // a data block DJ&

05: [SOME nATA]4> A -~ // a data block /@‘(Q (
[size=2,ptr=104,ptr=105,type=r]| // an inode ——
// a piece of the imap
o9
What file system operation(s) led to this segment write?

ot (e el)

J
[

—_— 1)

GARBAGE COLLECTION

N S S
@ @ ‘@ ‘ i
\W/ (garl A4 ’
- Jert N 55 oA

— V*Q [[lock -

/£eo
/_/ﬁgj &@vv\ /Pﬂ

lop L e 5

WHAT TO DO WITH OLD DATA?

Old versions of files = garbage
\id

\

— Keep old versions in case user wants to revert files later

Approach |:garbage is a feature!

— Versioning file systems

— Example: Dropbox

Approach 2: garbage collection

GARBAGE COLLECTION

Need to reclaim space:

|.When no more references (any file system)

2.After newer copy is created (COW file system) ~10o MBS

LFS reclaims segments (not individual inodes and data blocks)

e
L

- Want future overwites to be to\sequential areas \7@\ \PQ X
. : : L \

- Tricky, since segments are usually partly valid &“‘ WQ/ L\é

W“’“}“ i
N N pﬂl\ &*X
(D of \K\M)
N RO \r

}\.

GARBAGE CULLECTIUN
ol & oy

&% 10% 95% zg% qw,

disk segments: USED | USED @ | FREE

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

GARBAGE COLLECTION

General operation: " b/face,
. . o
Pick M segments, compact into N (where N < M). M

—~—— - ol W
po

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

kS

“* " GARBAGE COLLECTION MECHANISW
Ao A \

Is an inode the latest version?

C—

— Check imap to see if this inode is pointed to D[N2
— Fast! (e AW
Is a data block the latest version?
— Scan ALL inodes to see if any point to this data
— Very slow!
How to track information more efficiently?

— Segment summary: For every data block in segment, store its inode number
7-h|ch file) and offset (which block of file) ol

Lj/‘ 2 o HME/O
{”‘T"b
(2

o SEGMENT SUMMARY -
65 IV TN ANY

2 F)\ 7 ¥

bk[0]:A0 [map[k]:A1

O\L D I[k] | imap DJ
e\J\@"P 09&1}’: A0 Al I '

|1 fo- 3
(N, T) = SegmentSummar‘@; (“09& [:6 "D ,\hul

inode = Read(imap[N]); >3 EA] %\.f Pp i }?O\

- S A\ 9)

if (inodeﬁij)== A) L?(' WP
// block D is alive Y Vﬁe

else C> A’D %”«

// block D is garbage }

GARBAGE COLLECTION POLICY

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine Iivenesirﬁﬂ(
Policy: - «(\0&8@
O\Ov

Which segments to compact!? /, Vol

* clean most empty first
* clean coldest (ones undergoing least change)

* more complex heuristics...

CRASHRECOVERY ©

What data needs to be recovered after a crash! Need imap (lost in volatile memory)

&
L ptrs to
\ memory: imap pieces after Iast
checkpoint g \@ checkpoint QJ
(6

o
R disk so | si |TS2l| s3

~ t

T — Jett
gV

tail after last_ ‘(Q%\

to} ,
¥ /
S'V
/ - checkpoint &ﬁ\\%"’;\p/"’(

: W
o sopod plet | Ty

CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)

Upon recovery:

- read checkpoint to find most imap pointers and segment tail

- find rest of imap pointers by reading past tail

What if crash during checkpoint?

CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/tlmestamps to |dent|fy newest checkpoint

d'sk ® %-

st

gbq/

/‘

PERSISTENCE SUMMARY

|
Managing I/O devices is a significant part of OS!

Disk drives: storage media with specific gecometry

(Filesystemsi OS provided API to access disk

ple FS3FS layout with SB, Bitmaps, Inodes, Datablocks
ayout with Sb, bitmaps, Inodes, Datablock

FFS: Split simple FS into groups. Key idea: put inode, data close to each other

LFS: Puts data where it’s fastest to write, hope future reads cached in memory
] https://www.eecs.harvard.edu/~margo/papers/user|1ix95-|fs/ upplement/

—

FSCK, Journaling) %,,r‘r\

O S

DISTRIBUTED SYSTEMS

HOW DOES GOOGLE SEARCH WORK?

Google Search I'm Feeling Lucky

WHAT IS A DISTRIBUTED SYSTEM?

A distributed system is one where a machine I've never heard of can cause my program to fail.
— Leslie Lamport

Definition:

More than | machine working together to solve a problem

Examples:

— client/server: web server and web client

— cluster: page rank computation

WHY GO DISTRIBUTED?

More computing power
More storage capacity
Fault tolerance

Data sharing

NEW CHALLENGES

System failure: need to worry about partial failure

Communication failure: links unreliable
- bit errors
- packet loss

- node/link failure

Why are network sockets less reliable than pipes!?

COMMUNICATION OVERVIEW

Raw messa ges: UDP
Reliable messages: TCP

Remote procedure call: RPC

RAW MESSAGES: UDP

UDP : User Datagram Protocol
API:
- reads and writes over socket file descriptors

- messages sent from/to ports to target a process on machine

Provide minimal reliability features:

- messages may be lost

- messages may be reordered

- messages may be duplicated

- only protection: checksums to ensure data not corrupted

RAW MESSAGES: UDP

Advantages
— Lightweight
— Some applications make better reliability decisions themselves (e.g., video
conferencing programs)

Disadvantages

— More difficult to write applications correctly

RELIABLE MESSAGES: LAYERING STRATEGY

TCP: Transmission Control Protocol

Using software to build

reliable logical connections over unreliable physical connections

TECHNIQUE #1: ACK

Sender Receiver
[send message] —_

— [recv message]
[send ack]

<
4

[recv ack]

Ack: Sender knows message was received
What to do about message loss!?

TECHNIQUE #2: TIMEQUT

Sender Receiver
[send message] —/ X
[start timer]

... waiting for ack ...

[timer goes off]
[send message] —

— [recv message]
— [send ack]

[recv ack] «

TIMEQUT

How long to wait?

Too long!?

— System feels unresponsive

Too short!?
— Messages needlessly re-sent

— Messages may have been dropped due to overloaded server. Resending makes
overload worse!

LOST ACK PROBLEM

Sender Receiver
[send message] —

‘i [recv message]
W — — [send ack]

[timout]
[send message] —

‘iessage]

— [send ack]

[recv ack] -~

SEQUENCE NUMBERS

Sequence numbers
- senders gives each message an increasing unique seq number

- receiver knows it has seen all messages before N

Suppose message K is received.
- if K <= N, Msg K is already delivered, ignore it
- if K= N + [, first time seeing this message
-ifK>N+ 12

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order

Timeouts are adaptive

COMMUNICATIONS OVERVIEW

Raw messages: UDP
Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call
What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

RPC

Machine A Machine B
int main(...) { int foo(char *msg) {
int x = foo(”’hello”);
} }
int foo(char *msg) { void foo_listener() {
send msg to B while(1) {
recv msg from B recy, call foo
} }

client
wrapper

Machine A

int main(...) {

}

int x = foo("’hello”);

-
int foo(char *msg) {

W

send msg to B
recv msg from B

RPC

Machine B

int foo(char *msg) {

}

7

void foo_listener() {

J

while(l) {
recy, call foo

}

server
wrapper

RPG TOOLS

RPC packages help with two components
(1) Runtime library
— Thread pool

— Socket listeners call functions on server

(2) Stub generation
— Create wrappers automatically

— Many tools available (rpcgen, thrift, protobufs)

WRAPPER GENERATION

Wrappers must do conversions:

- client arguments to message

- message to server arguments

- convert server return value to message

- convert message to client return value

Need uniform endianness (wrappers do this)

Conversion is called marshaling/unmarshaling, or serializing/deserializing

WRAPPER GENERATION: POINTERS

Why are pointers problematic?
Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

RPG OVER TCP?

Sender Receiver
[call]
[tcp send]—
—[recv]
_________________ [ack]
D [exec call]
[return]

—[tcp send]

RPG OVER UDP

Strategy: use function return as implicit ACK
Piggybacking technique

What if function takes a long time?

then send a separate ACK

Sender Receiver
[call]
[udp send
l\>[recv]
[exec call]
[return]

/tcp send]

[recv]

NEXT STEPS

Next class: Distributed NFS

Discussion this week:Worksheet and review, Q&A for P5

