
LFS, DISTRIBUTED SYSTEMS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 5: Due April 29. Last Project!

Project 4a, 4b grading update
Regrades status

Peer mentors for next semester! https://forms.gle/h7zXQidTP4QxiwVD8

COURSE FEEDBACK

https://aefis.wisc.edu

AGENDA / LEARNING OUTCOMES

How to design a filesystem that performs better for small writes?

What are the design principles for systems that operate across machines?

RECAP

FS StructS

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

CRASH CONSISTENCY SUMMARY

Crash consistency: Important problem in filesystem design!

Two main approaches
FSCK:

 Fix file system image after crash happens
 Too slow and only ensures consistency

Journaling

 Write a transaction before in-place updates
 Checksum, batching
 Ordered journal avoids data writes

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

–  Growing gap between sequential and random I/O performance
–  RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?

WRITES

IMAP EXPLAINED

CHECKPOINT REgiOn

How do we find the imap, given pieces of it are also spread across the disk?

Checkpoint Region (CR):

 fixed region at say start of the disk
 pointers to the latest pieces of the inode map
 Updated every 30s or so, performance is not affected

READING IN LFS

1.  Read the Checkpoint region
2.  Read all imap parts, cache in mem
3.  To read a file:

1.  Lookup inode location in imap
2.  Read inode
3.  Read the file block

BUNNY 20
https://tinyurl.com/cs537-sp19-bunny19

You are given the traffic stream of writes to disk performed by LFS.
Before these writes, you can assume the file system only had a root directory
You can also assume that a single inode takes up an entire block.

BUNNY 20
https://tinyurl.com/cs537-sp19-bunny19

GARBAGE COLLECTION

What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!

–  Keep old versions in case user wants to revert files later
–  Versioning file systems
–  Example: Dropbox

Approach 2: garbage collection

Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
 - Want future overwites to be to sequential areas
 - Tricky, since segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

Garbage Collection

General operation: �
Pick M segments, compact into N (where N < M).

Mechanism: �
How does LFS know whether data in segments is valid?

Policy: �
Which segments to compact?

Garbage Collection Mechanism

Is an inode the latest version?
–  Check imap to see if this inode is pointed to
–  Fast!

Is a data block the latest version?
–  Scan ALL inodes to see if any point to this data
–  Very slow!

How to track information more efficiently?
–  Segment summary: For every data block in segment, store its inode number

(which file) and offset (which block of file)

SEGMENT SUMMARY

(N,	T)	=	SegmentSummary[A];	
	
inode	=	Read(imap[N]);	
	
if	(inode[T]	==	A)	

	//	block	D	is	alive	
else	

	//	block	D	is	garbage	

Garbage Collection POLICY

General operation: �
Pick M segments, compact into N (where N < M).

Mechanism: �
Use segment summary, imap to determine liveness

Policy: �
Which segments to compact?

•  clean most empty first
•  clean coldest (ones undergoing least change)
•  more complex heuristics…

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

What data needs to be recovered after a crash? Need imap (lost in volatile memory)

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
 - read checkpoint to find most imap pointers and segment tail
 - find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

PERSISTENCE SUMMARY

Managing I/O devices is a significant part of OS!
Disk drives: storage media with specific geometry
Filesystems: OS provided API to access disk

Simple FS: FS layout with SB, Bitmaps, Inodes, Datablocks
FFS: Split simple FS into groups. Key idea: put inode, data close to each other
LFS: Puts data where it’s fastest to write, hope future reads cached in memory

https://www.eecs.harvard.edu/~margo/papers/usenix95-lfs/supplement/

FSCK, Journaling

DISTRIBUTED SYSTEMS

HOW DOES GOOGLE SEARCH WORK?

What is a Distributed System?

A distributed system is one where a machine I’ve never heard of can cause my program to fail.
— Leslie Lamport

Definition: �
More than 1 machine working together to solve a problem

Examples:
–  client/server: web server and web client
–  cluster: page rank computation

Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

New Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable
-  bit errors
-  packet loss
-  node/link failure

Why are network sockets less reliable than pipes?

Communication Overview

Raw messages: UDP
Reliable messages: TCP
Remote procedure call: RPC

Raw Messages: UDP

UDP : User Datagram Protocol
API:
 - reads and writes over socket file descriptors
 - messages sent from/to ports to target a process on machine

Provide minimal reliability features:
 - messages may be lost
 - messages may be reordered
 - messages may be duplicated
 - only protection: checksums to ensure data not corrupted

Raw Messages: UDP

Advantages
–  Lightweight
–  Some applications make better reliability decisions themselves (e.g., video

conferencing programs)

Disadvantages
–  More difficult to write applications correctly

Reliable Messages: Layering strategy

TCP: Transmission Control Protocol

Using software to build

 reliable logical connections over unreliable physical connections

Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Ack: Sender knows message was received
What to do about message loss?

Technique #2: Timeout

Sender
[send message]
[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

TIMEOUT

How long to wait?

Too long?
–  System feels unresponsive

Too short?
–  Messages needlessly re-sent
–  Messages may have been dropped due to overloaded server. Resending makes

overload worse!

LOST ACK PROBLEM

Sender
[send message]

[timout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

SEQUENCE NUMBERS

Sequence numbers
 - senders gives each message an increasing unique seq number
 - receiver knows it has seen all messages before N

Suppose message K is received.
 - if K <= N, Msg K is already delivered, ignore it
 - if K = N + 1, first time seeing this message
 - if K > N + 1 ?

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order
Timeouts are adaptive

Communications Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

RPC
int main(…) {

 int x = foo(”hello”);
}

int foo(char *msg) {

 send msg to B
 recv msg from B

}

Machine A
int foo(char *msg) {

 …
}

void foo_listener() {

 while(1) {
 recv, call foo
 }

}

Machine B

RPC
int main(…) {

 int x = foo(”hello”);
}

int foo(char *msg) {

 send msg to B
 recv msg from B

}

Machine A
int foo(char *msg) {

 …
}

void foo_listener() {

 while(1) {
 recv, call foo
 }

}

Machine B

client
wrapper

server
wrapper

RPC Tools

RPC packages help with two components
(1) Runtime library

–  Thread pool
–  Socket listeners call functions on server

(2) Stub generation
–  Create wrappers automatically
–  Many tools available (rpcgen, thrift, protobufs)

Wrapper Generation

Wrappers must do conversions:
 - client arguments to message
 - message to server arguments
 - convert server return value to message
 - convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[tcp send]

NEXT STEPS

Next class: Distributed NFS

Discussion this week: Worksheet and review, Q&A for P5

