PERSISTENCE: FILE SYSTEMS & FFS

Shivaram Venkataraman
CS 537, Spring 2019



ADMINISTRIVIA

Project 4b: Due next week 4/16
Project 5: One project 9%. Updated due dates on website

Discussion this week: Review worksheet, More Q&A for 4b



AGENDA / LEARNING OUTCOMES

How does file system represent files, directories?
What steps must reads/writes take?

How does FFS improve performance?
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FILE APIWITH FILE DESCRIPTORS
int =%(chaf@, int flag, mode t mode)

read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size t nbyte)
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- hierarchical .
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- traverse once . o

- offsets precisely defined
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FILE, DIRECTORY API SUMMARY

Using multiple types of name provides convenience and efficiency

Mount and link features provide flexibility.
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Special calls (fsync, rename) let developers communicate requirements to file system
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type (file or dir?)
uid (owner)

| rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)

links count (# paths)
addrs[N] (N data biocks)

What is max file size with single level?
Assume 256-byte inodes
(all can be used for pointers)
Assume 4-byte addrs R M@fb
ek p°

L gash b
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Indirect blocks are stored in regular data blocks

Largest file size with 64 indirect blocks?
e 9254 ;Arq, 6k phw o idieck  blok .
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4

e |
Better for small files! DomJ?\Q
How to handle even larger files?

/1IN VAN UVAR
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https://tinyurl.com/cs537-sp19-bunny | 5
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Assume 256 byte inodes (I6 inodes/block). https://tinyurl.com/cs537-sp 19-bunny 5
What is the offset for inode with number 0?

2 1 [ ;2 N
What is the offset for inode with number @2 /¢ ? —

[2leh + 4y 256 = 15k0

What is the offset for inode with number @2 40 /

PLED 4 4oy WSR2 9LYD
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DIRECTORIES T

File systems vary W [

I\\[e_ nov~€

‘;(\OAQ/

Common design:
Store directory entries in data blocks . :

Large directories just use multiple data blocks

Use bit in inode to distinguish directories from files
bt

0e v\\/

Various form/:ﬁ could be used -////%

- lists —»
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SIMPLE DIRECTORY LIST EXAMPLE

valid name inode MJ oA
|- . | 34 W
I . 35
A O 00 80
I

bar 23 o b
— fhose DOVML Opmbfa

__+ unlink("foo”)

[xeake C\( 99“)
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FS STRUCTS: BITMAPS

How do we find free data blocks or free inodes?
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AN

" FSSTRUCTS: SUPERBLOCK

Basic FS configuration metadata, like block size, # of inodes
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. .. SUMMARY

Super Block Inode Bitmap
v
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- create file
- Write

- open

- read

- close

FS OPERATIONS



create /foo/bar
244
data inode root foo bar root foo e
bitmap  bitmap \inode inode  inode data data
& "
e Iread| -
[@do \3’; @ read \
U —

A.}:(
read

N2 read |-
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write
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open /foo/bar

data inode " root foo bar root foo bar
bitmap  bitmap inode inode  inode data data data
=) raen
read

read
read
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write to /foo/bar (assume file exists and has been opened)

data inode root foo bar root foo bar
bitmap  bitmap inode inode  inode data data data
T read
-
e@@/ rea
write
- write
&\DS ¢ “Jn |write E
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read /foo/bar — assume opened

data inode root foo bar root foo bar
bitmap  bitmap inode inode  inode data data data
read

—_—

read

) -
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close /foo/bar b Al .
. - B %A%\O?/Q Aﬂiﬁ- S‘&Y \~

azell

data inode root foo bar root foo bar
bitmap  bitmap inode inode  inode data data data

nothing to do on disk!
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EFFICIENGY

How can we avoid this excessive 1/O for basic ops!?

Cache for: M P(?jtgolb t e v ol
7
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- reads

- write buffering N
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WRITE BUFFERING

O/vgyﬁtes,(delete Jscheduling
< - oq
Shared structs (e.g., bitmaps+dirs) often overwritten. \%&tl@@‘) ~ M\)ﬂ

UofiT&

withe (“ch(/ B MDIC)

Tradeoffs: how much to buffer, how long to buffer
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FAST FILE SYSTEM »A‘“ Wk
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FILE LAYOUT IMPORTANCE

{UJFQH

REA! ‘e Slk\

M 0/} Layout is not disk-aware!
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DISK-AWARE FILE SYSTEM

R ‘ﬁ/ne N 24?1-

How to make the disk use more efficient?

\J
Where to place meta-data and data on disk!?
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PLACEMENT TECHNIQUE: GROUPS

Key idea: Keep inode close to data

Use groups across disks;

Strategy: allocate inodes and data blocks in same group.
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In FFS, groups were ranges of cylinders

called cylinder group

In ext2, ext3, ext4 groups are ranges of blocks
ext.

—_— —  —/

called block group
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REPLICATED SUPER BLOCKS

|annaann%ann

group | group 2 group 3
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i

ck
ape
top platter damage? da&kﬁw

solution: for each group, store super-block at different offset
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SMART POLICY ¢ reere o "
L o (reote /@9 Ale

group | group 2 group 3

Where should new inodes and data blocks go!?
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PLACEMENT STRATEGY

Put related pieces of data near each other.
-

_—

Rules:

|. Put directory entries near directory inodes.

2. Put inodes near directory entries. }GL\Q Y

3. Put data blocks near inodes.

Problem: File system is one big tree
All directories and files have a common root.
All data in same FS is related in some way
Trying to put everything near everything else doesn’t make any choices!
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REVISED STRATEGY

Put more-related pieces of data near each other

Put less-related pieces of data far group inodes data

Trace 6 operess” 8V o U ==y
o e ‘ //} |aicde ee

Cr pledic [a 2 [pEg-—————- S —
3 —————————— e —
§ 4 e
5 ____________________
6 ____________________
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POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group wit)‘[\/fjwer used inodes than average groua

First data block: allocate near inode
nedl TNoae

Other data blocks: allocate near previous block
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PROBLEM: LARGE FILES
wed all daka

Single large file can fill nearly all of a group af
Displaces data for many small files /‘Lé a(fﬂzgf%’% ‘7”“43
/C
group inodes data
0 /a———————- /aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a—-———————-—
1 __________________________________________________
2 __________________________________________________

Most files are small!
Better to do one seek for large file than
one seek for each of many small files


Shivaram


SPLITTING LARGE FILES 1. "\«

e d o
group inodes data C/\\M " GXTOU%
0 /a———————- /aaaad“-—— —————————— —————————— —————————— N

1l ————— = |laaaagds-——-- ——--—--—T- —oooToT T momm e .
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Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”
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Assume that the average positioning time (i.e., seek and rotation) = 10 ms.
Assume that disk transfers data at 100 MB/s.

If FFS large file chunk size is 4MB, what is the effective throughput we are getting?

What is the effective throughput with 8MB chunk size!?



POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.

Move to another group (w/ fewer than avg blocks) every subsequent |MB.



OTHER FFS FEATURES

FFS also introduced several new features:
— large blocks (with libc buffering / fragments)
— long file names
— atomic rename

— symbolic links



FFS: SECTOR PLAGEMENT

Similar to track
skew in disks
chapter

Modern disks:
Disk cache



FFS SUMMARY

First disk-aware file system
— Bitmaps
— Locality groups
— Rotated superblocks

— Smart allocation policy

Inspired modern files systems, including ext2 and ext3



OTHER TAKEAWAYS

All hardware is unique
Treat disk like disk!
Treat flash like flash!

Treat random-access memory like random-access memory!



NEXT STEPS

Next class: How to provide consistency despite failures?

Discussion today:Worksheet with problems, Q&A for project 4b



