
PERSISTENCE: FILE SYSTEMs & FFS 

Shivaram Venkataraman 
CS 537, Spring 2019 



ADMINISTRIVIA 

Project 4b: Due next week 4/16 
Project 5: One project 9%. Updated due dates on website 
 
Discussion this week: Review worksheet, More Q&A for 4b 



AGENDA / LEARNING OUTCOMES 

How does file system represent files, directories? 
 
What steps must reads/writes take? 
 
How does FFS improve performance? 
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File API WITH FILE DESCRIPTORS 

int	fd	=	open(char	*path,	int	flag,	mode_t	mode)	
read(int	fd,	void	*buf,	size_t	nbyte)	
write(int	fd,	void	*buf,	size_t	nbyte)	
close(int	fd)	

advantages: 
 - string names 
 - hierarchical 
 - traverse once 
 - offsets precisely defined 
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FILE, DIRECTORY API Summary 

Using multiple types of name provides convenience and efficiency 
 
Mount and link features provide flexibility. 
 
Special calls (fsync, rename) let developers communicate requirements to file system 
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FS LAYOUT 
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Inode 

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

What is max file size with single level? 
 Assume 256-byte inodes  
 (all can be used for pointers) 
 Assume 4-byte addrs 
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inode

indirect indirect indirect indirect

Indirect blocks are stored in regular data blocks 

Largest file size with 64 indirect blocks?  Any Cons? 
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inode

indirectdata data data

Better for small files! 
How to handle even larger files? 
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BUNNY 15 

https://tinyurl.com/cs537-sp19-bunny15 



BUNNY 15 
Assume 256 byte inodes (16 inodes/block).   
What is the offset for inode with number 0? 
 
 
 
What is the offset for inode with number 0? 
 
 
 
 
What is the offset for inode with number 0? 
 

https://tinyurl.com/cs537-sp19-bunny15 
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Directories 
File systems vary 
 
Common design:  

Store directory entries in data blocks 
 Large directories just use multiple data blocks 
 Use bit in inode to distinguish directories from files 

 
Various formats could be used 
 - lists 
 - b-trees 
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Simple Directory List Example 

valid name inode 
1 
1 
1 

. 
.. 

foo 

134 
35 
80 

1 bar 23 

unlink(“foo”) 
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FS Structs: BITMAPS 
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How do we find free data blocks or free inodes? 

Data bitmap 

Inode bitmap 
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FS Structs: SUPERBLOCK 
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Basic FS configuration metadata, like block size, # of inodes 
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SUMMARY 

Super Block

Data Block�
Inode Table

Data BitmapInode Bitmap

directories indirects
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FS Operations 

 - create file 
 - write 
 - open 
 - read 
 - close 



data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

create /foo/bar 

read 
read 

read 
read 

read 
write 

read 
write 

write 

write 

Why must read for bar inode? 
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data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

open /foo/bar 

data 
bar 

read 
read 

read 
read 

read 
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data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

write to /foo/bar (assume file exists and has been opened) 

bar 
data 

read 
read 
write 

write 
write 
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data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

read /foo/bar – assume opened 

data 
bar 

read 
read 

write 
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data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

close /foo/bar 

data 
bar 

nothing to do on disk! 
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Efficiency 

How can we avoid this excessive I/O for basic ops? 
 
Cache for: 
 - reads 
 - write buffering 
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Write Buffering 

Overwrites, deletes, scheduling 
 
Shared structs (e.g., bitmaps+dirs) often overwritten. 
 
Tradeoffs: how much to buffer, how long to buffer 
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FAST FILE SYSTEM  
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FILE LAYOUT IMPORTANCE 

Data Blockssuper 
block inodes

0 N 

bitmaps

slow 

Layout is not disk-aware! 
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DISK-AWARE FILE SYSTEM 

How to make the disk use more efficient? 
 
Where to place meta-data and data on disk? 
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PLACEMENT Technique: Groups 

DS IB

group 1 0 G 

DS IB

2G 

DS IB

3G group 2 group 3 

… 

Key idea: Keep inode close to data 

Use groups across disks;  
Strategy: allocate inodes and data blocks in same group. 

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram



PLACEMENT TECHNIQUE: Groups 

In FFS, groups were ranges of cylinders 
 called cylinder group 

 
In ext2, ext3, ext4 groups are ranges of blocks 
  called block group 
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REPLICATED SUPER BLOCKS 

DS IB

group 1 0 G 

DS IB

2G 

DS IB

3G group 2 group 3 

… 

Is it useful to have multiple super blocks? 
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Problem 
Old FS: All super-block copies 
are on the top platter. 
Correlated failures!  What if  
top platter damage? 

solution: for each group, store super-block at different offset 
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Smart Policy 

DS IB

Where should new inodes and data blocks go? 

group 1 0 G 

DS IB

2G 

DS IB

3G group 2 group 3 

… 
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PLACEMENT Strategy 

Put related pieces of data near each other. 
Rules: 

1. Put directory entries near directory inodes. 
2. Put inodes near directory entries. 
3. Put data blocks near inodes. 

 
Problem: File system is one big tree 

All directories and files have a common root. 
All data in same FS is related in some way 

Trying to put everything near everything else doesn’t make any choices! 
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Revised Strategy 

Put more-related pieces of data near each other 
Put less-related pieces of data far 
 

/a/b	
/a/c	
/a/d	
/b/f	
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POLICY SUMMARY 

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block
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Problem: Large Files 

Single large file can fill nearly all of a group 
Displaces data for many small files 

Most files are small! 
Better to do one seek for large file than 

one seek for each of many small files 
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SPLITTING LARGE FILES 

Define “large” as requiring an indirect block 

Starting at indirect (e.g., after 48 KB) put blocks in a new block group. 

Each chunk corresponds to one indirect block 
Block size 4KB, 4 byte per address => 1024 address per indirect 
1024*4KB = 4MB contiguous “chunk” 
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BUNNY 16 

https://tinyurl.com/cs537-sp19-bunny16 



BUNNY 16 
Assume that the average positioning time (i.e., seek and rotation) = 10 ms.  
Assume that disk transfers data at 100 MB/s.  
 
If FFS large file chunk size is 4MB, what is the effective throughput we are getting? 
 
 
 
 
What is the effective throughput with 8MB chunk size? 
 



POLICY SUMMARY 

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.  
Move to another group (w/ fewer than avg blocks) every subsequent 1MB.



OTHER FFS FEATURES 

FFS also introduced several new features:  
–  large blocks (with libc buffering / fragments) 
–  long file names 
–  atomic rename 
–  symbolic links 

  



FFS: SECTOR placement  

Similar to track 
skew in disks 

chapter 

Modern disks: 
Disk cache 



FFS SUMMARY 

First disk-aware file system 
–  Bitmaps 
–  Locality groups 
–  Rotated superblocks 
–  Smart allocation policy 
 

Inspired modern files systems, including ext2 and ext3 



OTHER TAKEAWAYs 

All hardware is unique 
Treat disk like disk! 
Treat flash like flash! 
Treat random-access memory like random-access memory! 



NEXT STEPS 

Next class: How to provide consistency despite failures? 
 
Discussion today: Worksheet with problems, Q&A for project 4b 


