PERSISTENCE: FILE SYSTEMS & FFS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 4b: Due next week 4/16
Project 5: One project 9%. Updated due dates on website

Discussion this week: Review worksheet, More Q&A for 4b

AGENDA / LEARNING OUTCOMES

How does file system represent files, directories?
What steps must reads/writes take?

How does FFS improve performance?

’ N
For P .

Shivaram

RECAP

FILE APIWITH FILE DESCRIPTORS
int =%(chaf@, int flag, mode t mode)

read(int fd, void *buf, size_t nbyte)
write(int fd, void *buf, size t nbyte)

Eiggé(int éE)
it =

advantages: ohen
: & N &WWLJ to F
- string names %)4« te
- hierarchical .
oY+
- traverse once . o

- offsets precisely defined

Shivaram

Shivaram

Shivaram

Shivaram

FILE, DIRECTORY API SUMMARY

Using multiple types of name provides convenience and efficiency

Mount and link features provide flexibility.
" —

Special calls (fsync, rename) let developers communicate requirements to file system
< MV“e>
ndw - "

) - . Cou\/ r\@”"%)
Cl}(oYV‘A(/ M’(A'{/w W‘Aa/ @\awc I(VMWL"; mm&[/ft*’a/

Ch /FC[Q. dxk ,Fl&c.h?-th
Le?erﬂ\ke o Tt I
@&WC ’FCQQ' % {./’\NP

vonome, [Lile. Tk Ay Kl)

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

D_Mov “c o .
S RSLAYOUT e, e

Vob oD 0
vw'\f > Tro 1% ‘”\Dd@
EEEnonnn (666G
0 - 7 8 15)b

DEDIDIDEDIDIDED EEENDEDIDIDEDED]D | D Rgyw=
31

16 23 24

DIDIDIDIDIDIDID N DIDIDIDIDIDEIDID
32 39 40 47
DIDIDIDIDIDIDID R DIDIDIDIDIDEIDID
48 55 56 63

Shivaram

Shivaram

Shivaram

type (file or dir?)
uid (owner)

| rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)

links count (# paths)
addrs[N] (N data biocks)

What is max file size with single level?
Assume 256-byte inodes
(all can be used for pointers)
Assume 4-byte addrs R M@fb
ek p°

L gash b
4 B

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Indirect blocks are stored in regular data blocks

Largest file size with 64 indirect blocks?
e 9254 ;Arq, 6k phw o idieck blok .
{ jadivek block = 4K3 , eath ‘“"(”l‘r 4 bptes e\~ l;}
- c o2 addr in A4 \wdumek block -
= |lo24 A 4EB . aMB
Gl tadtat -~ plug 4MB 2 256 ™MD 4o

Any Cons!?

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

4

e |
Better for small files! DomJ?\Q
How to handle even larger files?

/1IN VAN UVAR

Shivaram

Shivaram

Shivaram

Shivaram

BUNNY 15

https://tinyurl.com/cs537-sp19-bunny | 5

BUNNY 15

Assume 256 byte inodes (I6 inodes/block). https://tinyurl.com/cs537-sp 19-bunny 5
What is the offset for inode with number 0?

2 1 [;2 N
What is the offset for inode with number @2 /¢ ? —

[2leh + 4y 256 = 15k0

What is the offset for inode with number @2 40 /

PLED 4 4oy WSR2 9LYD

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

DIRECTORIES T

File systems vary W [

I\\[e_ nov~€

‘;(\OAQ/

Common design:
Store directory entries in data blocks . :

Large directories just use multiple data blocks

Use bit in inode to distinguish directories from files
bt

0e v\\/

Various form/:ﬁ could be used -////%

- lists —»

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

SIMPLE DIRECTORY LIST EXAMPLE

valid name inode MJ oA
|- . | 34 W
I . 35
A O 00 80
I

bar 23 o b
— fhose DOVML Opmbfa

__+ unlink("foo”)

[xeake C\(99“)

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FS STRUCTS: BITMAPS

How do we find free data blocks or free inodes?

\b ‘
DEBIOBY | R IR I Q1] W%“MNM%
0 o 7
e Mot has n ae e
Data bitmap = dke Ahg:t ‘ial;uk@ Lo\ hoth |
1"0} ‘ M ot 't });r{'—é ﬂC,«
j© 18 -~ — 56 0"”{/
- poov O~

. Dpbo00o pobD
Inode bitmap

. PN
e :
F] g b o
\D tg oA =

poo ooo ” MO\("\/\DV DY X@Z/om/{\

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

AN

" FSSTRUCTS: SUPERBLOCK

Basic FS configuration metadata, like block size, # of inodes

’nzm:nnnnn
olelelelolololo
gmmmmmmg
olelelolelololo

DIDIDIDIDIDAIDID
8 E
DIDIDIDIDIDAIDID
24 31
DIDIDIDIDIDAIDID
40 47
DIDIDIDIDIDAIDID
56 63

Shivaram

Shivaram

. .. SUMMARY

Super Block Inode Bitmap
v
K):Q_O\OJ:W l___a q/(/éo

(aki 0w 5 (éq‘ﬁ /Fmo{a\

"

Data Block
Inode Table directories indirects

i 1
«\ VJ?

Xt

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

- create file
- Write

- open

- read

- close

FS OPERATIONS

create /foo/bar
244
data inode root foo bar root foo e
bitmap bitmap \inode inode inode data data
& "
e Iread| -
[@do \3’; @ read \
U —

A.}:(
read

N2 read |-
% rite v/
N ‘
write

/\/\O @y}r’ﬁk\u @qu//

wﬂ\"m%e} X fm"“’(

Lo
%@i W Why must read for bar inode? % Aok

O~ Ce OWwer |
T Falsze tibe Wl

rl)ﬂ.rrmwon

—

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

open /foo/bar

data inode " root foo bar root foo bar
bitmap bitmap inode inode inode data data data
=) raen
read

read
read

Shivaram

Shivaram

Shivaram

write to /foo/bar (assume file exists and has been opened)

data inode root foo bar root foo bar
bitmap bitmap inode inode inode data data data
T read
-
e@@/ rea
write
- write
&\DS ¢ “Jn |write E
>
\P\o S e
NG .
C/&L/ \ (3‘0

oA

et

N

Shivaram

Shivaram

read /foo/bar — assume opened

data inode root foo bar root foo bar
bitmap bitmap inode inode inode data data data
read

—_—

read

) -

Shivaram

Shivaram

Shivaram

close /foo/bar b Al .
. - B %A%\O?/Q Aﬂiﬁ- S‘&Y \~

azell

data inode root foo bar root foo bar
bitmap bitmap inode inode inode data data data

nothing to do on disk!

Shivaram

Shivaram

EFFICIENGY

How can we avoid this excessive 1/O for basic ops!?

Cache for: M P(?jtgolb t e v ol
7
(3\05\/& v, e
ot i te @:)WMM
%\)N\/u \W‘)\ Ly
0}@)(&

- reads

- write buffering N

Shivaram

Shivaram

WRITE BUFFERING

O/vgyﬁtes,(delete Jscheduling
< - oq
Shared structs (e.g., bitmaps+dirs) often overwritten. \%&tl@@‘) ~ M\)ﬂ

UofiT&

withe (“ch(/ B MDIC)

Tradeoffs: how much to buffer, how long to buffer
] Y e jc e)

Qode £e fle do 1o s .- v\,UU(A
2, Wi Te (qﬁd\l ”l«eﬂ@) oy (e (@%{/ 0 W) 1) MM

?, f@w&«a L W ile

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FAST FILE SYSTEM »A‘“ Wk

Qi

\&\%Q SS}(\;% /r \70,)1}
0 %) Y
o

X

Shivaram

Shivaram

Shivaram

FILE LAYOUT IMPORTANCE

{UJFQH

REA! ‘e Slk\

M 0/} Layout is not disk-aware!
Vf\ B u*
/

<

Shivaram

Shivaram

DISK-AWARE FILE SYSTEM

R ‘ﬁ/ne N 24?1-

How to make the disk use more efficient?

\J
Where to place meta-data and data on disk!?

Shivaram

Shivaram

Shivaram

PLACEMENT TECHNIQUE: GROUPS

Key idea: Keep inode close to data

Use groups across disks;

Strategy: allocate inodes and data blocks in same group.

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

In FFS, groups were ranges of cylinders

called cylinder group

In ext2, ext3, ext4 groups are ranges of blocks
ext.

—_— — —/

called block group

C a2

- —
O |
Otﬁ-oﬁf O %{"WP (,_

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

REPLICATED SUPER BLOCKS

|annaann%ann

group | group 2 group 3

Shivaram

Shivaram

i

ck
ape
top platter damage? da&kﬁw

solution: for each group, store super-block at different offset

Shivaram

Shivaram

Shivaram

Shivaram

SMART POLICY ¢ reere o "
L o (reote /@9 Ale

group | group 2 group 3

Where should new inodes and data blocks go!?

Shivaram

Shivaram

PLACEMENT STRATEGY

Put related pieces of data near each other.
-

_—

Rules:

|. Put directory entries near directory inodes.

2. Put inodes near directory entries. }GL\Q Y

3. Put data blocks near inodes.

Problem: File system is one big tree
All directories and files have a common root.
All data in same FS is related in some way
Trying to put everything near everything else doesn’t make any choices!

Shivaram

Shivaram

Shivaram

Shivaram

REVISED STRATEGY

Put more-related pieces of data near each other

Put less-related pieces of data far group inodes data

Trace 6 operess” 8V o U ==y
o e ‘ //} |aicde ee

Cr pledic [a 2 [pEg-—————- S —
3 —————————— e —
§ 4 e
5 ____________________
6 ____________________

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group wit)‘[\/fjwer used inodes than average groua

First data block: allocate near inode
nedl TNoae

Other data blocks: allocate near previous block

Shivaram

Shivaram

Shivaram

PROBLEM: LARGE FILES
wed all daka

Single large file can fill nearly all of a group af
Displaces data for many small files /‘Lé a(fﬂzgf%’% ‘7”“43
/C
group inodes data
0 /a———————- /aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a—-———————-—
1 __
2 __

Most files are small!
Better to do one seek for large file than
one seek for each of many small files

Shivaram

SPLITTING LARGE FILES 1. "\«

e d o
group inodes data C/\\M " GXTOU%
0 /a———————- /aaaad“-—— —————————— —————————— —————————— N

1l ————— = |laaaagds-——-- ——--—--—T- —oooToT T momm e .

S T e IID TITIIIIIII TIIIIIITITTTIIIIITIT ke
S e T in
6 e o M

Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”

Shivaram

Shivaram

Shivaram

BUNNY 16

https://tinyurl.com/cs537-sp19-bunny | 6

BUNNY 16

Assume that the average positioning time (i.e., seek and rotation) = 10 ms.
Assume that disk transfers data at 100 MB/s.

If FFS large file chunk size is 4MB, what is the effective throughput we are getting?

What is the effective throughput with 8MB chunk size!?

POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.

Move to another group (w/ fewer than avg blocks) every subsequent |MB.

OTHER FFS FEATURES

FFS also introduced several new features:
— large blocks (with libc buffering / fragments)
— long file names
— atomic rename

— symbolic links

FFS: SECTOR PLAGEMENT

Similar to track
skew in disks
chapter

Modern disks:
Disk cache

FFS SUMMARY

First disk-aware file system
— Bitmaps
— Locality groups
— Rotated superblocks

— Smart allocation policy

Inspired modern files systems, including ext2 and ext3

OTHER TAKEAWAYS

All hardware is unique
Treat disk like disk!
Treat flash like flash!

Treat random-access memory like random-access memory!

NEXT STEPS

Next class: How to provide consistency despite failures?

Discussion today:Worksheet with problems, Q&A for project 4b

