
PERSISTENCE: FILE SYSTEMs & FFS

Shivaram Venkataraman
CS 537, Spring 2019

ADMINISTRIVIA

Project 4b: Due next week 4/16
Project 5: One project 9%. Updated due dates on website

Discussion this week: Review worksheet, More Q&A for 4b

AGENDA / LEARNING OUTCOMES

How does file system represent files, directories?

What steps must reads/writes take?

How does FFS improve performance?

Shivaram

RECAP

File API WITH FILE DESCRIPTORS

int	fd	=	open(char	*path,	int	flag,	mode_t	mode)	
read(int	fd,	void	*buf,	size_t	nbyte)	
write(int	fd,	void	*buf,	size_t	nbyte)	
close(int	fd)	

advantages:
 - string names
 - hierarchical
 - traverse once
 - offsets precisely defined

Shivaram

Shivaram

Shivaram

Shivaram

FILE, DIRECTORY API Summary

Using multiple types of name provides convenience and efficiency

Mount and link features provide flexibility.

Special calls (fsync, rename) let developers communicate requirements to file system

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FS LAYOUT

D D D I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Shivaram

Shivaram

Shivaram

Inode

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

What is max file size with single level?
 Assume 256-byte inodes
 (all can be used for pointers)
 Assume 4-byte addrs

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

inode

indirect indirect indirect indirect

Indirect blocks are stored in regular data blocks

Largest file size with 64 indirect blocks? Any Cons?

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

inode

indirectdata data data

Better for small files!
How to handle even larger files?

Shivaram

Shivaram

Shivaram

Shivaram

BUNNY 15

https://tinyurl.com/cs537-sp19-bunny15

BUNNY 15
Assume 256 byte inodes (16 inodes/block).
What is the offset for inode with number 0?

What is the offset for inode with number 0?

What is the offset for inode with number 0?

https://tinyurl.com/cs537-sp19-bunny15

D D D I I I I I
0 7

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Directories
File systems vary

Common design:

Store directory entries in data blocks
 Large directories just use multiple data blocks
 Use bit in inode to distinguish directories from files

Various formats could be used
 - lists
 - b-trees

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Simple Directory List Example

valid name inode
1
1
1

.
..

foo

134
35
80

1 bar 23

unlink(“foo”)

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FS Structs: BITMAPS

D IB DB I I I I I
0 7

How do we find free data blocks or free inodes?

Data bitmap

Inode bitmap

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FS Structs: SUPERBLOCK

S IB DB I I I I I
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Basic FS configuration metadata, like block size, # of inodes

Shivaram

Shivaram

SUMMARY

Super Block

Data Block�
Inode Table

Data BitmapInode Bitmap

directories indirects

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FS Operations

 - create file
 - write
 - open
 - read
 - close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

write

write

Why must read for bar inode?

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read
read

read
read

read

Shivaram

Shivaram

Shivaram

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

read
read
write

write
write

Shivaram

Shivaram

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

read
read

write

Shivaram

Shivaram

Shivaram

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

Shivaram

Shivaram

Efficiency

How can we avoid this excessive I/O for basic ops?

Cache for:
 - reads
 - write buffering

Shivaram

Shivaram

Write Buffering

Overwrites, deletes, scheduling

Shared structs (e.g., bitmaps+dirs) often overwritten.

Tradeoffs: how much to buffer, how long to buffer

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

FAST FILE SYSTEM

Shivaram

Shivaram

Shivaram

FILE LAYOUT IMPORTANCE

Data Blockssuper
block inodes

0 N

bitmaps

slow

Layout is not disk-aware!

Shivaram

Shivaram

DISK-AWARE FILE SYSTEM

How to make the disk use more efficient?

Where to place meta-data and data on disk?

Shivaram

Shivaram

Shivaram

PLACEMENT Technique: Groups

DS IB

group 1 0 G

DS IB

2G

DS IB

3G group 2 group 3

…

Key idea: Keep inode close to data

Use groups across disks;
Strategy: allocate inodes and data blocks in same group.

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

PLACEMENT TECHNIQUE: Groups

In FFS, groups were ranges of cylinders
 called cylinder group

In ext2, ext3, ext4 groups are ranges of blocks
 called block group

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

REPLICATED SUPER BLOCKS

DS IB

group 1 0 G

DS IB

2G

DS IB

3G group 2 group 3

…

Is it useful to have multiple super blocks?

Shivaram

Shivaram

Problem
Old FS: All super-block copies
are on the top platter.
Correlated failures! What if
top platter damage?

solution: for each group, store super-block at different offset

Shivaram

Shivaram

Shivaram

Shivaram

Smart Policy

DS IB

Where should new inodes and data blocks go?

group 1 0 G

DS IB

2G

DS IB

3G group 2 group 3

…

Shivaram

Shivaram

PLACEMENT Strategy

Put related pieces of data near each other.
Rules:

1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.

Problem: File system is one big tree

All directories and files have a common root.
All data in same FS is related in some way

Trying to put everything near everything else doesn’t make any choices!

Shivaram

Shivaram

Shivaram

Shivaram

Revised Strategy

Put more-related pieces of data near each other
Put less-related pieces of data far

/a/b	
/a/c	
/a/d	
/b/f	

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

Shivaram

POLICY SUMMARY

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Shivaram

Shivaram

Shivaram

Problem: Large Files

Single large file can fill nearly all of a group
Displaces data for many small files

Most files are small!
Better to do one seek for large file than

one seek for each of many small files

Shivaram

SPLITTING LARGE FILES

Define “large” as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

Each chunk corresponds to one indirect block
Block size 4KB, 4 byte per address => 1024 address per indirect
1024*4KB = 4MB contiguous “chunk”

Shivaram

Shivaram

Shivaram

BUNNY 16

https://tinyurl.com/cs537-sp19-bunny16

BUNNY 16
Assume that the average positioning time (i.e., seek and rotation) = 10 ms.
Assume that disk transfers data at 100 MB/s.

If FFS large file chunk size is 4MB, what is the effective throughput we are getting?

What is the effective throughput with 8MB chunk size?

POLICY SUMMARY

File inodes: allocate in same group with dir
Dir inodes: allocate in new group with fewer used inodes than average group

First data block: allocate near inode
Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group.
Move to another group (w/ fewer than avg blocks) every subsequent 1MB.

OTHER FFS FEATURES

FFS also introduced several new features:
–  large blocks (with libc buffering / fragments)
–  long file names
–  atomic rename
–  symbolic links

FFS: SECTOR placement

Similar to track
skew in disks

chapter

Modern disks:
Disk cache

FFS SUMMARY

First disk-aware file system
–  Bitmaps
–  Locality groups
–  Rotated superblocks
–  Smart allocation policy

Inspired modern files systems, including ext2 and ext3

OTHER TAKEAWAYs

All hardware is unique
Treat disk like disk!
Treat flash like flash!
Treat random-access memory like random-access memory!

NEXT STEPS

Next class: How to provide consistency despite failures?

Discussion today: Worksheet with problems, Q&A for project 4b

