
PERSISTENCE: FILE API AND FILE SYSTEMS 

Shivaram Venkataraman 
CS 537, Spring 2019 



ADMINISTRIVIA 

Mid-semester grades:  All regrades are done!? 
 
Project 4b: Due next week 4/9 
Project 5: One project 9%. Updated due dates on website 
 
Discussion this week: Review worksheet, More Q&A for 4b 



AGENDA / LEARNING OUTCOMES 

What are the API to create/modify directories? 
 
How does file system represent files, directories? 
 
What steps must reads/writes take? 
 



RECAP 



READING DATA FROM DISK 

Seek Time 

Rotational delay 



RAID COMPARISON 



File API WITH FILE DESCRIPTORS 

int	fd	=	open(char	*path,	int	flag,	mode_t	mode)	
read(int	fd,	void	*buf,	size_t	nbyte)	
write(int	fd,	void	*buf,	size_t	nbyte)	
close(int	fd)	

advantages: 
 - string names 
 - hierarchical 
 - traverse once 
 - offsets precisely defined 



0 
1 
2 
3 
4 
5 

 offset =   
 inode =  

fds 
fd table 

 location = … 
 size = … 

inode 

“file.txt” also points here 

int	fd1	=	open(“file.txt”);	//	returns	3	
read(fd1,	buf,	12);	
int	fd2	=	open(“file.txt”);	//	returns	4	
int	fd3	=	dup(fd2);									//	returns	5	



Deleting Files 

There is no system call for deleting files! 
 
Inode (and associated file) is garbage collected when there are no references 
 
Paths are deleted when: unlink()	is called 
 
FDs are deleted when: close() or process quits 



Communicating Requirements: fsync 

File system keeps newly written data in memory for awhile
Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

fsync(int fd) forces buffers to flush to disk, tells disk to flush its write cache
Makes data durable



rename 

rename(char *old, char *new):
 - deletes an old link to a file
 - creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory

Atomicity guaranteed by OS!



Atomic File Update 

Say application wants to update file.txt atomically
If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file
2. fsync file.txt.tmp
3. rename file.txt.tmp over file.txt, replacing it



DIRECTORY FUNCTIONS, LINKS 



Directory Calls 

mkdir: create new directory 
 
readdir: read/parse directory entries 
 
Why no writedir? 



Special Directory Entries 



Links 

Hard links: Both path names use same inode number 
File does not disappear until all removed; cannot link directories 
 

echo	“Beginning…”	>	file1	
ln	file1	link	
cat	link	
ls	–li		
echo	“More	info”	>>	file1	
mv	file1	file2	
rm	file2	

 



SOFT LINKS 

Soft or symbolic links: Point to second path name; can softlink to dirs

ln	–s	oldfile	softlink	

Confusing behavior: “file does not exist”!
Confusing behavior: “cd linked_dir; cd ..; in different parent!



PERMISSIONS, ACCESS CONTROL 



Many File Systems 

Users often want to use many file systems 
 
For example: 
 - main disk 
 - backup disk 
 - AFS 
 - thumb drives 
 
Idea: stitch all the file systems together into a super file system! 
 



/

backups home 

bak1 bak2 bak3 

etc bin 

tyler 

537 

p1 p2 

.bashrc 

 
sh>	mount	
/dev/sda1	on	/	type	ext4	(rw)	
/dev/sdb1	on	/backups	type	ext4	(rw)	
AFS	on	/home	type	afs	(rw)	



BUNNY 14 

https://tinyurl.com/cs537-sp19-bunny14 



BUNNY 14 

What is the file permission to only give current user read, write, execute access? 

Consider the following code snippet: 
 echo	“hello”	>	oldfile	

	 	ln	–s	oldfile	link1	
	ln	oldfile	link2 
	rm	oldfile	

	cat	link1 

	cat	link2 

What will be the output of  

What will be the output of  

https://tinyurl.com/cs537-sp19-bunny14 



FILE API Summary 

Using multiple types of name provides convenience and efficiency 
 
Mount and link features provide flexibility. 
 
Special calls (fsync, rename) let developers communicate requirements to file system 



FILESYSTEM DISK STRUCTURES 



FS Structs: Empty Disk 

D D D D D D D D
0 7 

D D D D D D D D
8 15 

D D D D D D D D
16 23 

D D D D D D D D
24 31 

D D D D D D D D
32 39 

D D D D D D D D
40 47 

D D D D D D D D
48 55 

D D D D D D D D
56 63 

Assume each block is 4KB 



FS Structs: DATA BLOCKS 

D D D D D D D D
0 7 

D D D D D D D D
8 15 

D D D D D D D D
16 23 

D D D D D D D D
24 31 

D D D D D D D D
32 39 

D D D D D D D D
40 47 

D D D D D D D D
48 55 

D D D D D D D D
56 63 

Simple layout à Very Simple File System 



INODE POINTERS 

D D D I I I I I
0 7 

D D D D D D D D
8 15 

D D D D D D D D
16 23 

D D D D D D D D
24 31 

D D D D D D D D
32 39 

D D D D D D D D
40 47 

D D D D D D D D
48 55 

D D D D D D D D
56 63 



inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

One Inode Block 

Each inode is typically 256 bytes (depends on 
the FS, maybe 128 bytes) 

 
4KB disk block 
 
16 inodes per inode block. 



Inode 

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)



FS Structs: INODE DATA POINTERS 

D D D I I I I I
0 7 

D D D D D D D D
8 15 

D D D D D D D D
16 23 

D D D D D D D D
24 31 

D D D D D D D D
32 39 

D D D D D D D D
40 47 

D D D D D D D D
48 55 

D D D D D D D D
56 63 



Inode 

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
Blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

Assume single level (just pointers to data 
blocks) 
 
What is max file size? 

 Assume 256-byte inodes  
 (all can be used for pointers) 
 Assume 4-byte addrs 

 
How to get larger files? 



inode

data data data data



inode

indirect indirect indirect indirect

Indirect blocks are stored in regular data blocks 

Largest file size with 64 indirect blocks?  Any Cons? 



inode

indirectdata data data

Better for small files! 
How to handle even larger files? 



OTHER APPROACHES 
Extent-based 
Linked (File-allocation Tables) 
Multi-level Indexed 
 
Questions 

–  Amount of fragmentation (internal and external) 
–  Ability to grow file over time? 
–  Performance of sequential accesses (contiguous layout)? 
–  Speed to find data blocks for random accesses? 
–  Wasted space for meta-data overhead (everything that isn’t data)? 
     Meta-data must be stored persistently too! 



BUNNY 15 

https://tinyurl.com/cs537-sp19-bunny15 



BUNNY 15 
Assume 256 byte inodes (16 inodes/block).   
What is the offset for inode with number 0? 
 
 
 
What is the offset for inode with number 0? 
 
 
 
 
What is the offset for inode with number 0? 
 

https://tinyurl.com/cs537-sp19-bunny15 

D D D I I I I I
0 7 



Directories 
File systems vary 
 
Common design:  

Store directory entries in data blocks 
 Large directories just use multiple data blocks 
 Use bit in inode to distinguish directories from files 

 
Various formats could be used 
 - lists 
 - b-trees 



Simple Directory List Example 

valid name inode 
1 
1 
1 

. 
.. 

foo 

134 
35 
80 

1 bar 23 

unlink(“foo”) 



Allocation 

How do we find free data blocks or free inodes? 
 
Free list 
 
Bitmaps 
 
Tradeoffs in next lecture… 



FS Structs: BITMAPS 

D IB DB I I I I I
0 7 

D D D D D D D D
8 15 

D D D D D D D D
16 23 

D D D D D D D D
24 31 

D D D D D D D D
32 39 

D D D D D D D D
40 47 

D D D D D D D D
48 55 

D D D D D D D D
56 63 



Superblock 

Need to know basic FS configuration metadata, like: 
 - block size 
 - # of inodes 
 
Store this in superblock 



FS Structs: SUPERBLOCK 

S IB DB I I I I I
0 7 

D D D D D D D D
8 15 

D D D D D D D D
16 23 

D D D D D D D D
24 31 

D D D D D D D D
32 39 

D D D D D D D D
40 47 

D D D D D D D D
48 55 

D D D D D D D D
56 63 



SUMMARY 

Super Block

Data Block�
Inode Table

Data BitmapInode Bitmap

directories indirects



Part 2 : Operations 

 - create file 
 - write 
 - open 
 - read 
 - close 



data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

create /foo/bar 

read 
read 

read 
read 

read 
write 

read 
write 

write 

write 

What needs to be read and written? 



data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

open /foo/bar 

data 
bar 

read 
read 

read 
read 

read 



data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

write to /foo/bar (assume file exists and has been opened) 

bar 
data 

read 
read 
write 

write 
write 



data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

read /foo/bar – assume opened 

data 
bar 

read 
read 

write 



data inode root foo bar root foo 
bitmap bitmap inode inode inode data data 

close /foo/bar 

data 
bar 

nothing to do on disk! 



Efficiency 

How can we avoid this excessive I/O for basic ops? 
 
Cache for: 
 - reads 
 - write buffering 



Write Buffering 

Why does procrastination help? 
 
Overwrites, deletes, scheduling 
 
Shared structs (e.g., bitmaps+dirs) often overwritten. 
 
We decide: how much to buffer, how long to buffer… 
 - tradeoffs? 



NEXT STEPS 

Next class: UNIX Fast-File System 
 
 
 
 


